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Fabian Dietz† Stephan Eitel‡
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Abstract

We consider a model of infinitely repeated lottery contests in which the winner
of the prior contest (incumbent) additionally gains the opportunity to bias the
subsequent contest by exerting early effort in an intermediate stage. An effort-
maximizing contest designer strategically chooses the cost advantage of incumbency.
We show that the contest designer prefers to set the cost advantage such that the
incumbent only partially discourages the contender, i.e. the contender exerts less,
but still positive, effort than in an unbiased contest. In this way, rent extraction is
higher than under independent lottery contests with no intermediate stage, because
(i) players compete fiercer to become the incumbent and (ii) the increase in early
effort outweighs the decrease in effort in the biased contest. Therefore, we provide
some rationale for incumbency advantages, for example in repeated procurement
settings.

Keywords: repeated contests, lottery contest, incumbent, discouragement effect
JEL classification: C72, C73, D72

1 Introduction

Organizers of repeated competitive situations often warrant incumbency advantages as
additional incentives. In procurement, for example, firms compete not only for the
immediate reward of the current mandate, but also for an incumbency status that allows
the winning firm to generate an advantage in bidding for future mandates. Specifically,
when the winner of a mandate implements the project he applied for, the organizer can
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reward a high-quality implementation with an advantage in competition for the next
mandate. Moreover, as the quality of implementation will usually determine the size of
the future advantage, the incumbent can control this advantage by the choice of effort in
implementation.

The literature on contest design gives ambiguous advice on how large an effort-
maximizing contest designer should set the incumbency advantage in a repeated setting.
Clearly, an incumbency advantage acts as an additional reward for winning a contest,
which boosts participants’ efforts. However, an incumbency advantage also introduces
asymmetry into future rounds. A contender may be discouraged from fighting against
a favored opponent, leading him to reduce his effort. In this article, we employ an in-
finitely repeated contest model between two ex-ante symmetric players to analyze how an
effort-maximizing contest designer moderates the trade-off between these two effects.

We consider an infinitely repeated lottery contest with two players. In particular, we
investigate a structure in which today’s winner (in the following called incumbent) can
endogenously bias tomorrow’s contest in his favor. Each contest is partitioned into an
investment stage and a competition stage. In the investment stage, the incumbent can
exert early effort to gain a head start over his opponent (in the following called contender).
The contest designer may encourage such behavior by (partially) compensating early effort
and thus giving the incumbent a cost advantage over the contender. In the competition
stage, both contestants - the incumbent as well as the contender - observe early effort and
exert effort to win the contest.

We show that the extent to which the incumbent exerts early effort depends on the
degree of compensation for early effort. If compensation is very high such that early effort
is cheap, the incumbent fully discourages the contender from competition. If compensation
is moderate, full discouragement is no longer optimal. Instead, the incumbent partially
discourages the contender who still participates, but exerts less effort than he would in a
symmetric contest. If compensation is zero (or even negative), the incumbent does not
bias the subsequent contest at all. Consequently, the contests remain independent of each
other.

Anticipating equilibrium behavior, the contest designer chooses marginal compensation
of early effort to maximize rent extraction, i.e., players’ total effort net of partial com-
pensation in the investment stages, relative to the total prize sum. This moderates two
opposing effects. First, compensation of early effort increases the incumbency advantage
and incentivizes both players to fight hard in order to become tomorrow’s incumbent, and
hence increases rent extraction (incentive effect). Second and conversely, the incumbency
advantage partially or fully discourages the contender from competing (discouragement
effect), which reduces rent extraction.

We demonstrate that endogenous incumbency can increase rent extraction compared
to a game with repeated independent contests. In particular, we find that the contest
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designer prefers to induce partial discouragement: he sets the incumbency advantage such
that the incumbent chooses to bias tomorrow’s contest in his favor, but the contender
remains active in tomorrow’s contest, albeit with reduced effort compared to an unbiased
contest. Naturally, the optimal choice also depends on discounting. Being the incumbent
today improves the chances of remaining the incumbent in the future. For patient players,
these spillover effects to future periods are more important, which increases the incentive
effect to exert effort today.

We also consider that players may cooperate by means of grim trigger strategies
to the contest designer’s detriment. For a sufficiently high discount factor, conditional
cooperation equilibria can exist where both players exert zero effort, as long as no player has
deviated from cooperation yet. We show that the contest designer can utilize endogenous
incumbency to restrict cooperative incentives. By setting a high level of compensation,
the contest designer can eliminate cooperative equilibria as deviation from cooperation
becomes more profitable.

In addition, we cover two extensions of the model. First, we investigate the situation
in which the incumbent’s early effort is not observable for the contender. In this case, the
incumbent loses the commitment opportunity, but still enjoys a cost advantage as early
effort remains (partially) compensated. We show that compared to the case with observable
early effort, the contest designer prefers to increase the incumbency advantage even further.
However, observable early effort yields higher rent extraction than unobservable early
effort, given that the contest designer acts optimally in both cases. Therefore, if the
contender cannot observe early effort, the contest designer should publicly announce it.

Second, we consider situations where the contest designer only values winner’s effort and
not loser’s effort. In this case, the contest designer prefers to further increase compensation
until the incumbent finds it optimal to fully discourage the contender, that is, the contender
exerts no effort. Still, competition remains intense because the incumbent must remain
active preemptively to defend his position in every contest.

The remainder of the paper is structured as follows. Section 2 discusses our contribution
to the related literature. In Section 3, we introduce the baseline model and derive players’
equilibrium behavior. In Section 4, we show that a contest designer profits by the use of
endogenous incumbency to maximize rent extraction and to avoid cooperation. Section
5 covers the scenarios where early effort is unobservable or the contest designer is only
interested in winner’s effort. Section 6 concludes.

2 Related Literature

Incumbency advantages and asymmetric players are a prevalent topic in several lines of
literature. In studies dealing with auctions and procurement processes, incumbents may
benefit from existing or emerging market barriers in the form of entry costs or switching
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costs (e.g. Greenstein (1993), Arozamena et al. (2014), Premik (2023)). In lobbying
contests, one firm might represent the status quo and the other might challenge it (Polborn
(2006)). In the contest literature, two forms of incumbency advantages are present. First,
incumbents are often directly advantaged in the contest. Incumbents are either modeled to
be more efficient, that is, the incumbent’s effort is cheaper or more impactful compared to
rivals’ efforts (Fu (2006), Epstein et al. (2011), Franke et al. (2013), Franke et al. (2014)),
or incumbents have a head start over their rivals, or potentially both (Fu and Wu (2020)).
Second, incumbents can have commitment opportunities. In this way, the incumbency
advantage is the favored leader position in sequential Stackelberg frameworks (Dixit (1987),
Linster (1993), Morgan (2003), Serena (2017), Hinnosaar (2024), Gao et al. (2025)).

Our model combines these two advantages. An incumbent gains access to an exclusive
investment stage. Investments (early effort) yield an observable head start for the next
competition stage. Consequently, the incumbent can behave as a Stackelberg-leader.
Whether the incumbent prefers to act as a Stackelberg leader or to play the simultaneous
contest depends on the marginal cost of early effort, which is set by the contest designer.
If early effort is cheaper than regular effort, the incumbent prefers to act as a Stackelberg
leader, and additionally exerts effort more efficiently. Dixit (1987) and Linster (1993) show
that a commitment opportunity in the absence of any other heterogeneity has no value
in a logit contest. Conversely, if early effort is more productive than regular effort, then
a mover advantage arises, as in this case it becomes optimal to invest in a head start in
order to discourage the contender.

Several studies consider that an incumbency status arises as an additional reward for
winning a contest (Möller (2012), Clark and Nilssen (2018), Clark et al. (2020), Häfner and
Nöldeke (2022)). In this way, players can influence their chances of becoming the incumbent,
but cannot influence the size of their incumbency advantage. Still, some authors discuss
repeated contests in which previous behavior may indirectly influence future incumbency
advantages. For example, Beviá and Corchón (2013) propose a framework where the
relative share of efforts in a prior contest determines players’ abilities in a subsequent
contest. In Deck et al. (2024), a share of the incumbent’s effort carries over into the next
contest.

In contrast, the incumbency advantage is neither exogenously fixed nor is its size
determined by past behavior in our model. Instead, the incumbent decides on the level
of his advantage himself in a separate investment stage. In this way, we also contribute
to the literature on investments prior to contests. For instance, players may invest to
reduce their cost of effort (Münster (2007), Fu and Lu (2009)), or to increase their abilities
(Schaller and Skaperdas (2020)).

A substantial body of work discusses how contest designers influence heterogeneity
among players to maximize their objective function. Typically, the designer’s goal is to
maximize overall contest intensity. In ex-ante asymmetric contests, the optimal bias often
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counteracts existing asymmetries which levels the playing field (e.g. Lazear and Rosen
(1981), Schotter and Weigelt (1992), Kirkegaard (2013)). The rationale is that, in one-shot
lottery contests, equal strength maximizes aggregate effort. Under some circumstances, it
is also optimal for the contest designer to bias a contest in favor of the already advantaged
contestant (Meyer (1991), Meyer (1992), Epstein et al. (2011)).

In comparison, optimal biases in ex-ante symmetric contests are studied less often.
Drugov and Ryvkin (2017) discuss a general class of biased contest success functions that -
depending on the nature of the contest and the bias - may be optimal even when dealing
with symmetric players. Barbieri and Serena (2022) show that in a best-of-three Tullock
contest, it is optimal to incorporate biases, since intuitively this increases the probability
for all contests to be played. When the contest designer prefers to have a winner with
high ability, but is not able to ex-ante observe abilities, it can also be optimal to bias the
contest (Kawamura and de Barreda (2014); Pérez-Castrillo and Wettstein (2016)). Our
model discusses optimal biases in ex-ante symmetric settings as well but differs from the
aforementioned papers in several aspects. First, the contest designer can only indirectly
intervene in our model. In particular, the contest designer nudges contestants to bias
future contests by offering a (partial) compensation of early effort. Thus, early effort, i.e.,
the head start, is ultimately a decision variable of the incumbent. Second, the incumbency
advantage is neither an arbitrary bonus to some player nor a reflection of the incumbent’s
higher ability. Instead, the incumbency advantage is a reward and thus can be both earned
and lost.

Finally, we contribute to the literature on infinitely repeated contests in which coop-
erative strategies allow for multiple equilibria. In Leininger and Yang (1994), tit-for-tat
reasoning can emerge in a sequential one-shot contest where players can infinitely often
add to their effort. In infinitely repeated independent Tullock contests, cooperation may
be sustainable if the discount rate is sufficiently high (Linster (1994)). Brookins et al.
(2021) find experimental support for this result. In our model, endogenous incumbency
implies that contests are dynamically connected, as winning today provides an incumbency
status tomorrow. In principle, this increases the incentive to deviate from cooperation.
Indeed, we show that if incumbency provides a large advantage, then, in order to sustain
cooperation, the discount rate must be higher than in Linster (1994) for unrelated contests.

3 The model

We consider two players i, j who play an infinite number of contests in succession. Players
are ex-ante symmetric, i.e., their prize valuations and their productiveness coincides,
except for one characteristic: one player (henceforth referred to as player i, the incumbent)
has won the previous contest whereas the other (henceforth referred to as player j, the
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contender) has not.1 In each contest k, players can win a non-divisible prize which is
normalized to 1. Each contest is organized as a (potentially biased) lottery contest such
that players i, j win contest k with probabilities given by

pi,k =


1
2 if xi,k = xj,k = di,k = 0,
xi,k+di,k

xi,k+xj,k+di,k
otherwise,

(1)

and

pj,k =


1
2 if xi,k = xj,k = di,k = 0,

xj,k

xi,k+xj,k+di,k
otherwise.

(2)

where di,k ≥ 0 is the head start in favor of player i (henceforth called early effort), and
xi,k, xj,k ≥ 0 are players’ efforts. Players take into account that player i’s effective input
into the contest success function is given by xi,k + di,k. Players discount future periods by
discount factor δ ∈ (0, 1) which is constant over time.2

A contest is divided into an investment stage and a subsequent competition stage. In
the investment stage Ik of contest k, the incumbent can exert early effort di,k at marginal
cost of early effort b ≥ 0 to maximize his expected payoff

πIi,k = πCi,k(di,k) − b · di,k, (3)

where πCi,k is the expected payoff of the subsequent competition stage, which depends on
early effort.

In competition stage Ck, players observe the incumbent’s head start di,k and choose
efforts xi,k and xj,k simultaneously to maximize expected payoff, i.e.,

πCi,k = pi,k · (1 + δπIi,k+1) + (1 − pi,k) · δπCj,k+1 − xi,k, (4)

and
πCj,k = pj,k · (1 + δπIi,k+1) + (1 − pj,k) · δπCj,k+1 − xj,k, (5)

where πIi,k+1 denotes the winner’s continuation payoff (i.e. the payoff of the incumbent
of the next contest), πCj,k+1 denotes the loser’s continuation payoff (i.e. the payoff of the
contender of the next contest) and δ is the discount factor. Since the contender j has no
action in the investment stage, πIj,k+1 = πCj,k+1, so the contender’s payoff in the investment
stage is simply his payoff in the subsequent competition stage. In that sense, each contest

1By a slight abuse of notation, we do not rename the players in the first contest, although there is
no incumbent in the first contest as players are ex-ante symmetric. Notice also that depending on the
outcome of the contest, the identity of player i may change, such that player i (the incumbent) in contest
k is not necessarily the same player as player i in contest k + 1.

2Equivalently, δ can be interpreted as the probability with which the game continues in the next
period. Then, 1 − δ is the likelihood of an exogenous shock to the contest structure that causes the contest
to terminate.
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can be considered as a Stackelberg-variant where player i is both a Stackelberg-leader (by
exerting early effort in the investment stage) and a Cournot-player (by exerting regular
effort in the competition stage).3 The first contest is an exception, as there is no investment
stage because players are ex-ante symmetric.

The structure of the contest as well as the marginal costs of (early) effort are common
knowledge. The timing of the game is illustrated in Figure 1.

C1 I2 C2 [...] Ik Ck [...]

Figure 1: Timing of repeated contests (each rectangle depicts a period).

Lemma 1 (Single-period benchmark). In an unbiased one-shot lottery contest with a
prize of 1, both players exert effort equal to xi = xj = 1/4 and obtain expected payoffs of
πi = πj = 1/4.

Lemma 1 summarizes the equilibrium in an unbiased one-shot lottery contest. In what
follows, it will be useful to compare our findings to this single-period benchmark. Its
derivation can be found in any textbook on contest theory, for example in Konrad (2009)
or Beviá and Corchón (2024).

3.1 Equilibrium behavior in competition stages

In the competition stage of contest k, players observe player i’s early effort di,k and
maximize their expected payoffs by simultaneously choosing xi,k and xj,k. In every contest,
players fight for a prize of value 1. Additionally, players take into account that the winner
will become the incumbent and the loser will become the contender in the next contest,
which is reflected in their discounted continuation payoffs. Consequently, they compete
for an effective prize sum denoted by ψk = 1 + δ(πIi,k+1 − πCj,k+1). Optimal efforts and
corresponding payoffs are summarized in Lemma 2.

Lemma 2. In competition stage Ck, where player i exerted observable early effort di,k in
3In principle, player i can use both channels of effort. However, we show that player i will solely exert

early (regular) effort if the net cost of early effort is lower (higher) than the cost of regular effort. If the
costs of early effort and regular effort are identical, player i will be indifferent between any distribution
of efforts across the two stages under the condition that di,k + xi,k = 1/4, i.e., his effective input equals
effort of the single-period benchmark (see Lemma 1).
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the previous investment stage Ik, equilibrium efforts and payoffs are given by

xi,k =


1
4ψk − di,k if di,k ≤ 1

4ψk

0 if di,k > 1
4ψk,

xj,k =


1
4ψk if di,k ≤ 1

4ψk√
di,kψk − di,k if 1

4ψk < di,k < ψk

0 if di,k ≥ ψk,

πCi,k =


1
4ψk + δπCj,k+1 + di,k if di,k ≤ 1

4ψk√
di,kψk + δπCj,k+1 if 1

4ψk < di,k < ψk

ψk + δπCj,k+1 if di,k ≥ ψk,

πCj,k =


1
4ψk + δπCj,k+1 if di,k ≤ 1

4ψk

ψk + δπCj,k+1 + di,k − 2
√
di,kψk if 1

4ψk < di,k < ψk

δπCj,k+1 if di,k ≥ ψk.

The proof of Lemma 2 is in Appendix A.1. If the contest is unbiased (di,k = 0), players
are symmetric and play xi,k = xj,k = ψk/4.4 If di,k ∈ (0, ψk/4], the incumbent exerts effort
so that his effective input still equals ψk/4, and the contender reacts by playing xj,k = ψk/4.
If ψk/4 < di,k, then the incumbent does not exert additional effort (xi,k = 0), since his
effective input is already higher than ψk/4 and thus functions as a strategic substitute.
This either partially discourages the contender from competing, i.e., xj,k ∈ (0, ψk/4) for
di,k ∈ (ψk/4, ψk) or fully discourages him, i.e., xj,k = 0 for di,k ≥ ψk. In the latter case,
the competition stage degenerates and the incumbent wins with certainty.

3.2 Equilibrium behavior in investment stages

In investment stage Ik of contest k, player i who won the previous contest (the incumbent)
maximizes expected payoff by choosing optimal early effort d∗

i,k. Equilibrium early effort
and corresponding payoffs are summarized in Lemma 3.

Lemma 3. In investment stage Ik, equilibrium early effort by the contender and corre-
4Notice that this is not necessarily the same result as Lemma 1, as the former depends on ψk.
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sponding payoffs are given by

d∗
i,k =


ψk if b ≤ 1

2
ψk

4b2 if 1
2 < b < 1

0 if b ≥ 1,

πIi,k =


(1 − b)ψk if b ≤ 1

2
ψk

4b + δπCj,k+1 if 1
2 < b < 1

1
4ψk + δπCj,k+1 if b ≥ 1,

πIj,k = πCj,k.

The proof of Lemma 3 is in Appendix A.2. Notice that ψk, i.e., the value of winning
contest k, is not constant but a function depending on the value of incumbency that
decreases in the cost of early effort b and increases in the discount factor δ.

Decreasing b moderates two opposing effects. One the one hand, any b < 1 makes
the incumbent strong and the contender weak who suffers under a discouragement effect.
On the other hand, any b < 1 implies an increased ψk. The higher the difference in
continuation payoffs, the more valuable is the incumbency position and the fiercer players
fight in contest k (incentive effect). If early effort is cheap (b ≤ 1

2), the incumbent
invests in early effort to fully discourage the contender from competing. For b ∈ (1/2, 1),
early effort is moderately cheap. In this case, the incumbent exerts early effort and
partially discourages the contender, who exerts xj,k < ψk/4. Then, the contest’s outcome
is random, but the incumbent is the favorite because his input outweighs the contender’s
effort. Notice that the contender exerts less effort than a quarter of the effective prize.
Nonetheless, depending on b and δ, xj,k ≥ 1/4 is still possible, i.e., the contender’s effort
under endogenous incumbency can be higher than in the single-period benchmark, if the
prize ψk is sufficiently high such that the incentive effect dominates the discouragement
effect. If early effort is costly (b ≥ 1), then the incumbent will not invest early effort at all
because - in line with Dixit (1987) and Linster (1993) - the commitment opportunity itself
without a cost advantage (or even with a cost disadvantage) does not entail any value.

3.3 The infinite game

Lemma 2 and Lemma 3 characterize equilibrium behavior in any contest k, depending
on b and the effective prize ψk. To solve for the infinite game, we apply Theorem 3.3
from Fudenberg and Levine (1983) which states that a sequence of subgame perfect Nash
equilibria in the K-contest game5 converges for K → ∞ to a subgame perfect Nash
equilibrium in the infinite game under certain conditions (see Appendix A.3). That is

5The term K-contest game refers to the finite version of the game with K periods.
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why we first derive equilibrium behavior of the subgame-perfect Nash equilibrium of the
finite, K-contest game by backward induction.6 For K → ∞, this equilibrium directly
yields a subgame-perfect equilibrium of the infinite game, which we will call competitive
equilibrium.7 In the following, we will characterize the competitive equilibrium. Depending
on the value of b, the incumbent prefers to fully discourage, partially discourage, or not
discourage the contender. These three cases give rise to qualitatively different behavior,
and we analyze them separately.

For b ∈ (0, 1
2 ], Lemma 4 characterizes equilibrium behavior in contest k ≥ 2.8

Lemma 4. For b ∈ [0, 1
2 ], then, for any contest k ≥ 2 in which player i is the incumbent,

player j is the contender and early effort di,k is observable, the effective prize sum and
equilibrium behavior are given by

ψk = 1
1 − δ(1 − b) ,

d∗
i,k = 1

1 − δ(1 − b) ,

xi,k = xj,k = 0,

where the effective prize ψk and early effort d∗
i,k are decreasing in b and increasing in δ.

The proof is in Appendix A.2. Lemma 4 is characterized full discouragement. The
incumbent exerts a level of early effort equal to the effective prize sum. By doing so, the
incumbent ensures that the discouragement effect for the contender is strong enough to
dominate the incentive effect. The contender is fully discouraged from competing and
prefers to stay out of the contest. The result of the contest is therefore not probabilistic
anymore, since the incumbent wins with certainty. Consequently, the first contest’s winner
also wins all other contests with certainty whereas the first contest’s loser does not exert
any effort in any subsequent contest anymore. However, the incumbent does not win all
contests for free (unless b = 0).

For b ∈ (1/2, 1), Lemma 5 characterizes equilibrium behavior in contest k ≥ 2.

Lemma 5. If b ∈ (1/2, 1), then, for any contest k ≥ 2 in which player i is the incumbent
6Notice that for all cases except b = 0 and b = 1, the subgame-perfect Nash equilibrium of the

K-contest game is unique. For b = 0, there exists a continuum of optimal d∗
i,k ≥ ψk, as early effort is

costless. For b = 1, the incumbent is indifferent to all effort-early effort combinations under the condition
di,k + xi,k = 1/4. For simplicity, we assume that d∗

i,k = 0 for b = 1 and d∗
i,k = ψk for b = 0. Additionally,

we show in Section 4 that a contest designer always profits from setting b ∈ (0, 1).
7The competitive equilibrium is not the unique subgame-perfect Nash equilibrium in the infinite game.

We will additionally cover cooperative equilibria which are based on grim trigger strategies in Section 4.2.
8By assumption, there is no incumbent in the first contest which we characterize in Corollary 2.
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and player j is the contender, the effective prize sum and equilibrium behavior are given by

ψk = 1
1 − δA

,

d∗
i,k = 1

(1 − δA) 4b2 ,

xi,k = 0,

xj,k = 2b− 1
(1 − δA) 4b2 ,

where A = 5b−1
4b2 − 1. The effective prize ψk and early effort d∗

i,k are decreasing in b and
increasing in δ.

The proof is in AppendixA.2. Lemma 5 is characterized by partial discouragement.
The incumbent fully relies on early effort. The contender exerts less effort than he would if
the contest was unbiased, but still exerts positive effort. Therefore, the outcome is random,
but the incumbent is the favorite. For the contender, the discouragement effect is still
present, but less pronounced, such that the incentive effect now ensures a positive effort
choice.

For b ≥ 1, Lemma 6 characterizes the equilibrium in contest k ≥ 2.

Lemma 6. If b ≥ 1, then, for any arbitrary contest k ≥ 2 in which player i is the
incumbent, player j is the contender and early effort di,k is observable, the effective prize
sum and equilibrium behavior are given by

ψk = 1,

d∗
i,k = 0,

xi,k = xj,k = 1
4 .

The proof is in Appendix A.2. As discussed earlier, any b ≥ 1 implies that the
incumbent position is not valuable because it cannot be utilized in a beneficial way. All
contests remain independent such that each period’s contest resembles an unbiased lottery
contest with two symmetric players and an effective prize sum equal to 1.

Panel (a) of Figure 2 shows the relationship between the effective prize ψk and δ,
depending on b. Clearly, a larger continuation probability δ means that the future is more
valuable, and therefore the value of becoming the incumbent is larger. Similarly, a lower b
means that the value of becoming the incumbent is large, since players anticipate that if
they win, they can exploit their incumbency position in the next contest at low cost.

A similar logic applies to the relationship between equilibrium early effort d∗
i,k and the

parameters b and δ, which is illustrated in Panel (b) of Figure 2. Early effort is increasing
in the discount rate δ due to the incentive effect. A higher δ implies a higher effective
prize given that early effort is less costly than regular effort. Then, the incumbent faces
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1

2

ψk

(a) Prize sum ψk

b=2/5

b=3/5

b=3/4

b=1

1

2
1

δ

1

4

1

2

di,k
(b) Early effort dk

b=1/4

b=2/5

b=3/5

b=3/4

Figure 2: Effective prize sum and early effort for b ∈ (0, 1).

stronger incentives to bias the next contest in his favor and the contender is more difficult
to discourage. In contrast, the higher the cost of early effort b, the less pronounced is the
incentive effect and the less severe is the asymmetry between players. Therefore, early
effort is decreasing in b.

Figure 3 illustrates the interplay of the contender’s effort xj,k, discount factor δ and
the cost of early effort b. A low discount factor δ implies a rather weak incentive effect.
Nonetheless, player asymmetries are present. Consequently, the discouragement effect
dominates, i.e., the more disadvantaged the contender, the less effort he exerts. However,
a high δ implies a stronger incentive effect. Then, the contender fights fiercely even if he
faces a large disadvantage in the present. If the discount factor is close to 1, the contender
exerts more effort in equilibrium in case of an intermediate disadvantage (b = 3/4) than
in case of a strong (b = 3/5) or a weak one (b = 9/10). Hence, the contender’s effort is
nonmonotonic in b for large δ.

1

2
1

δ
1

10

1

5

1

4

xj,k

b=3/5

b=3/4

b=9/10

Figure 3: Effort by the contender depending on δ and b.

Figure 3 also illustrates that even in the presence of the discouragement effect, the
contender can exert more effort than in the single-period benchmark. This is the case if
both the discount factor and the cost of early effort are sufficiently high, such that the
incentive effect dominates the discouragement effect.

Corollary 1 gives the probabilities of winning in equilibrium.
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Corollary 1. For k ≥ 2, the probability pi,k with which the incumbent wins contest k is
given by

pi,k =


1 if b ≤ 1

2
1
2b if 1

2 < b < 1
1
2 if b ≥ 1.

In the cases b ≤ 1/2 and b ≥ 1, the probabilities of winning are straightforward. If
b ≤ 1/2, the contender is fully discouraged by the incumbent, who wins with certainty.
If b ≥ 1, the incumbent position is of no value and the behavior coincides with the
single-period benchmark, such that pi,k = 1/2.

In the nontrivial case b ∈ (1/2, 1), the probabilities of winning do not depend on the
discount factor but react differently to changes in the cost of early effort. Intuitively, both
players share the same discount factor by assumption such that its effect cancels out. A
lower b specifically benefits the incumbent and harms the contender in the current contest.
Therefore, the probability of winning for the incumbent decreases in b.

Notice that Lemmas 4, 5 and 6 do not specify equilibrium effort in the first contest,
in which there is no incumbent. The formulas derived for the effective prize sum ψk

nonetheless remain valid for k = 1. Therefore, inserting both ψ1 and di,1 = 0 in Lemma 2
yields Corollary 2.

Corollary 2. In the subgame perfect equilibrium of the infinite game, equilibrium efforts
and effective prize in the first contest are given by

ψ1 =


1 if b ≥ 1

1
1−δA if 1

2 < b < 1
1

1−δ(1−b) if 0 < b ≤ 1
2 ,

xi,1 = xj,1 =


1
4 if b ≥ 1
1
4

1
1−δA if 1

2 < b < 1
1
4

1
1−δ(1−b) if 0 < b ≤ 1

2 .

where A = 5b−1
4b2 − 1.

In general, Corollary 2 shows that, if the incumbent position is valuable, players exert
more effort in the first contest under endogenous incumbency compared to the single-period
benchmark. Clearly, the incentive effect intensifies the initial contest, while there is no
discouragement effect because players are symmetric.
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4 Optimal Contest Design

4.1 Rent extraction in the competitive equilibrium

The overall aim of the contest designer is to incentivize the players to exert effort. In
particular, we assume that the contest designer maximizes expected rent extraction, defined
as the ratio between total effort and the total prize sum. The contest designer values
effort both in the investment stages and in the competition stages. In the investment
stages, the contest designer may choose to partially compensate early effort, such that
if the incumbent invests di,k, the contest designer only receives a revenue of b · di,k. In
the competition stages, the contest designer values effort by both the incumbent and the
contender.

The general range of equilibrium rent extraction is straightforward. As effort is
nonnegative, rent extraction is nonnegative as well. If rent extraction were larger than
unity, at least one player would face a negative expected payoff and would improve by
playing zero at all stages. Therefore, rent extraction is bounded in the interval [0, 1].

By choosing the cost of early effort b (equivalent to choosing the compensation of early
effort 1 − b), the contest designer maximizes rent extraction ρ(b, δ), which is defined as

ρ(b, δ) = 1∑∞
k=1 δ

k−1 (
∞∑
k=1

δk−1(xi,k + xj,k + b · di,k)).

In what follows, we discuss how the cost of early effort influences the individual
components of rent extraction. In the previous section, we showed how players’ optimal
effort choices in the competition stage Ck depend on b and δ. We now proceed with the
remaining component of rent extraction, which is the revenue generated in the investment
stage Ik.

Figure 4 illustrates the revenue from investment stage Ik depending on the cost of early
effort b and the discount factor δ. Generally, b · di,k > 1/4, so the revenue is higher than
in the single-period benchmark.
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Figure 4: Revenue for the contest designer from early effort

The revenue depends on the cost of early effort b as follows. On the one hand, the
incumbent exerts more early effort if early effort is less costly. On the other hand, low
costs of early effort imply that the contest designer must compensate for a larger share
of early effort. These two effects interact with discounting. For a low discount factor,
the reward of becoming the incumbent has only little value. Then, the incentive effect is
weak such that the incumbent exerts a relatively low level of early effort, and moderate
compensation generates the highest revenue. In contrast, for a high discount factor, the
incentive effect is strong and the players are more sensitive to changes in b because they
highly value the long-term advantages of incumbency. The contest designer can use this
to his benefit by setting a high level of compensation, which raises the stakes.

Corollary 3. Define aggregate effort in contest k ≥ 2 as effort in competition stage Ck
and revenue in investment stage Ik, that is Ek = xi,k + xj,k + b · di,k. Then, aggregate effort
in the competitive equilibrium of contest k is given by

Ek =


1
2 if b ≥ 1
3b−1
4b2 ψk if 1

2 < b < 1

bψk if 0 ≤ b ≤ 1
2 .

Corollary 3 summarizes the aggregate effort that is generated in both the investment
stage Ik and the competition stage Ck of contest k ≥ 2 in the competitive equilibrium.9

The cost of early effort determines the qualitative behavior in the competitive equilibrium,
i.e., whether the incumbent does not, partially, or fully discourage the contender. Directly,
decreasing b increases marginal compensation at the cost of the contest designer. Indirectly,
decreasing b reinforces both the incentive effect and the discouragement effect.

Figure 5 illustrates the effect of the cost of early effort and discounting on aggregate
9The aggregate effort generated in contest 1 is characterized in Corollary 2.
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effort. Obviously, aggregate effort coincides with total effort in the single-period benchmark
if the incumbency advantage is worthless (b ≥ 1).

For b ∈ (1/2, 1), the cost of early effort is moderate and the incumbent partially
discourages the contender such that the contender exerts less than ψk/4. The higher
revenue generated by inducing early effort outweighs the negative effect on the contender’s
effort such that the competitive equilibrium outperforms the single-period benchmark in
every contest.10 Consequently, a contest designer always has an incentive to facilitate an
incumbent with some advantage, because any b ∈ (1/2, 1) dominates b = 1.

If cost of early effort is cheap (b ≤ 1/2), the incumbent fully discourages the contender
from competition by exerting Ek = bψk with ψk > 1. For b ∈ (0, 1/2], the aggregate
effort is increasing in the cost of early effort, because the negative effect of the higher
compensation exceeds the positive effect of increased early effort.11

1

2
1

b0

1

2

1
Ek

δ=1/2

δ=3/4

δ=9/10

δ=0.99

Figure 5: Aggregate effort in contest k ≥ 2.

Corollary 3 does not cover the first contest, in which there is no incumbent. Aggregate
effort in the first contest is given in Corollary 2. These two results allow us to characterize
equilibrium rent extraction.

Proposition 1. In the competitive equilibrium, rent extraction is given by

ρ(b, δ) =


1
2 if b ≥ 1
1
2 + δb(−8b+11)−3δ

8b2+δ(8b2−10b+2) if 1
2 < b < 1

1
2 + δb

2(1−δ+δb) if 0 < b ≤ 1
2 .

In particular, the contest designer optimally sets b∗ = δ+
√

9−5δ+3
δ+11 .

10Straightforwardly, for b ∈ (1/2, 1), 3b−1
4b2 > 1

2 , ψk ≥ 1 and, by Corollary 2, E1 >
1
2 .

11In the extreme case of full compensation (b = 0), no effort is exerted in any contest except the first
one. In fact, ρ(b, δ) = 1/2 for b = 0. Therefore, the optimal b is necessarily positive.
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The proof is in Appendix A.4. Figure 6 illustrates the results of Proposition 1. For
every δ ∈ (0, 1), the contest designer benefits from endogenous incumbency. In particular,
the contest designer always prefers to set the cost of early effort such that the incumbent
always partially discourages the contender. The optimal cost of early effort b∗ decreases in
the discount factor. The higher the discount factor, the more weight the contest designer
puts on the incentive effect and the more aggressive players react to an increase of future
rewards. Consequently, the contest designer decreases the cost of early effort further to
increase the incumbent’s early effort. This comes to the detriment of the contender, whose
chances of becoming the incumbent decrease. In the limit, as δ → 1, the contender wins
with probability zero, while the contest designer achieves full rent extraction.

1

2
1

b

1

2

1

ρ(b,δ)

δ=0.99

δ=0.9

δ=0.75

δ=0.5

Figure 6: Rent extraction depending on b and δ.

4.2 Cooperation among players

The competitive equilibrium is not the only subgame-perfect equilibrium of the infinite
game. For a sufficiently large discount factor, the infinite game allows for subgame-perfect
equilibria, in which players conditionally cooperate but punish in case of a deviation. In
this way, cooperation can be sustained, which benefits players through higher payoffs but
reduces rent extraction to the detriment of the contest designer.

In this section, we will show that a contest designer who is concerned about cooperation
among players can use endogenous incumbency to eliminate cooperative equilibria. We
focus on grim trigger strategies in which players are cooperative and exert no effort as
long as the opponent has not yet deviated from cooperation.12 Notice that if both players
exert no effort in all stages, the incumbent is chosen at random in every contest, but does
not capitalize on the incumbency status. If a player deviates, the other player punishes by

12In principle, many more Nash equilibria that rely on cooperation and punishment exist, such as in
tit-for-tat strategies. We focus on grim trigger strategies as a representative of this class, because an
exhaustive characterization of all cooperative strategies is beyond the scope of this paper.
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falling back on competitive behavior as defined in the competitive equilibrium for the rest
of the game. A subgame perfect equilibrium with cooperation through mutual grim trigger
strategies, henceforth called cooperative equilibrium, exists if deviation is not profitable in
any subgame.

Formally, the trigger-strategy is denoted by

T (b, δ) = {(di,k, xi,k, xj,k)∞
k=1}

with

xi,k =

0 if xi,n = xj,n = 0 for all 1 ≤ n ≤ k − 1 and di,n = 0 for all 1 ≤ n ≤ k,

xCOMP
i,k otherwise,

xj,k =

0 if xi,n = xj,n = 0 for all 1 ≤ n ≤ k − 1 and di,n = 0 for all 1 ≤ n ≤ k,

xCOMP
j,k otherwise,

di,k =

0 if xi,n = xj,n = di,n = 0 for all 1 ≤ n ≤ k − 1

dCOMP
i,k otherwise,

where xCOMP
i,k , xCOMP

j,k and dCOMP
i,k denote the equilibrium levels of effort and early effort

in the competitive equilibrium. Notice that players optimally deviate in the competition
stage rather than the investment stage. Suppose that at least one contest has been played
and no deviation has occurred yet. If the (randomly assigned) incumbent deviated in the
investment stage, the contender would observe the deviation and would already be able
to punish in the same contest. If the incumbent optimally deviates in the competition
stage, the contender can only punish in the subsequent contests, as effort choices in the
competition stage are simultaneous. Therefore, deviation in the competition stage yields
higher payoffs than in the investment stage.

Proposition 2. A cooperative equilibrium in which both players follow grim trigger
strategies T (b, δ) exists

(i) for b ∈ (0, 1/2), if and only if δ ≥ 1
1+b ,

(ii) for b ∈ [1/2, 1], if and only if δ ≥ 4b2

4b2+3b−1 , and

(iii) for b ∈ (1,∞), if and only if δ ≥ 2/3.

The proof is in Appendix A.5. Proposition 2 shows that for positive b, the cooperative
equilibrium only exists if the discount factor δ is sufficiently high. Deviation from coop-
eration improves payoffs in the present contest, but the subsequent punishment reduces
payoffs in all future periods. If players are sufficiently patient, the threat of punishment
outweighs the immediate benefits from deviation. Otherwise, today’s reward for deviation
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exceeds the cost of future punishment, and cooperation is not sustainable.13 If the contest
designer sets b optimally according to Proposition 1, the cooperative equilibrium exists for
δ > δ∗ ≈ 0.659.

Figure 7 illustrates the existence conditions of the cooperative equilibrium. By changing
the cost of early effort b, the contest designer can use endogenous incumbency to eliminate
the possibility of cooperation. In the absence of endogenous incumbency (which is
equivalent to b ≥ 1), all contests are independent and the cooperative equilibrium exists
for δ > 2/3. By introducing endogenous incumbency, the contest designer can change the
range of discount factors δ for which the cooperative equilibrium does not exist. Therefore,
for any δ, the contest designer can set a sufficiently low b such that cooperation cannot be
sustained. The players’ expected payoffs in the competitive equilibrium are rather high,
and thus the punishment for deviation is less severe.

Figure 7: Existence of the cooperative equilibrium

In general, two effects characterize the shape of the boundary. On the one hand, de-
creasing the cost of early effort b implies a higher effective prize sum, and thus increases the
incentive effect. Then, intensified competition increases the payoff difference between the
competitive equilibrium and the cooperative equilibrium, which becomes more attractive.
On the other hand, the deviator from cooperation will be the advantaged incumbent in
the subsequent contest. Therefore, decreasing b implies a less severe punishment. If the
cost of early effort is very low, the latter effect dominates the former effect, whereas the
opposite holds for a cost of early effort close to b = 1.

13In the extreme case b = 0, a cooperative equilibrium cannot be sustained, because deviations cannot
be punished. Unilateral deviation makes the deviator the incumbent in the subsequent contest. Since
early effort is costless, the incumbent can fully discourage the contender at no cost. However, for b = 0,
the contest designer only ensures a rent extraction of ρ = 1/2. Proposition 2 shows that the contest
designer can, for any δ, optimally choose a level of compensation that yields higher rent extraction.
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5 Extensions

5.1 Unobservable early effort

The Stackelberg structure implicitly assumes that early effort di,k is observable by the
contender before he decides upon xCj,k. If early effort is not observable prior to the
contender’s decision, the incumbent loses his first-mover advantage as there is no visible
commitment. Therefore, players play as if the decision were simultaneous. The game is
then equivalent to a simultaneous move game. For ease of notation, we will analyze the
game in the simultaneous version.

Even if early effort is unobservable, it can still be more cost effective than regular
effort. In contrast, if early effort is more costly than regular effort, the incumbent prefers
to exert regular effort instead of early effort. In this case, equilibrium behavior coincides
with Lemma 6. In this section, we focus on the cases where the incumbent enjoys a cost
advantage (b ≤ 1).

Consider contest k where player i is the incumbent and player j is the contender. Then,
both players’ maximization problems are given by

max
xi,k

πi,k = xi,k
xi,k + xj,k

(1 + δπi,k+1) + (1 − xi,k
xi,k + xj,k

)δπj,k+1 − bxi,1

and
max
xj,k

πj,k = xj,k
xi,k + xj,k

(1 + δπi,k+1) + (1 − xj,k
xi,k + xj,k

)δπj,k+1 − xj,1.

The maximization problems are symmetric except for the incumbent’s marginal cost of
effort. To solve the game, we follow the same method as in previous sections. First, we
characterize equilibrium behavior of the finite K-contest game by backward induction.
Then, we apply Fudenberg and Levine (1983) to characterize the competitive equilibrium
of the infinite game. Detailed calculations are relegated to the Appendix.

In case of unobservable effort, rent extraction is given by

ρ(b, δ) = 1∑∞
k=1 δ

k−1

∞∑
k=1

δk−1(b · x∗
i,k + x∗

j,k).

Proposition 3. In the competitive equilibrium with unobservable early effort, rent extrac-
tion is given by

ρ(b, δ) = 1
2 + bδ(1 − b)

(1 + b)(1 + b− δ + δb) .

The contest designer who maximizes rent extraction optimally sets

b∗ = δ + 2
√

1 − δ − 1
δ + 3 .

The proof is in Appendix A.7. Figure 8 illustrates the results from Proposition 3. We
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find that rent extraction is increasing in the discount factor δ. Intuitively, a higher δ
implies a stronger incentive effect, which increases rent extraction. Again, the interplay
between the discouragement effect and the incentive effect shapes players’ effort choices.
On the one hand, decreasing the incumbent’s cost of effort b strengthens the incentive
effect and positively influences players’ efforts in equilibrium. On the other hand, the
decreasing b also strengthens the discouragement effect which reduces the contender’s
effort in equilibrium. In contrast to the case of observable early effort, the incumbent
never chooses to fully discourage the contender.

The higher the discount factor δ, the lower the optimal level of b that maximizes rent
extraction. Clearly, the more the contest designer (and the players) value the future, the
more emphasis is put on the incentive effect and the less on the discouragement effect.
Consequently, contests become more intense in that case, and the level of optimal rent
extraction increases as well.

1

2
1

b

1

2

1

ρ(b,∞)

δ=0.99

δ=0.9

δ=0.7

δ=0.5

Figure 8: Rent extraction in the infinite game depending on δ

Corollary 4. For all δ ∈ (0, 1), the competitive equilibrium yields a higher level of rent
extraction if early effort is observable than if it were unobservable, given that the contest
designer sets the cost of early effort b optimally.

Corollary 4 compares the competitive equilibrium of the case with observable early
effort with the one with unobservable early effort. It highlights that the contest designer
prefers early effort to be observable for any discount factor δ. Therefore, he has an incentive
to always publicly announce the level of the incumbent’s total effort because it restores
the incumbent’s commitment opportunity.14 This increases both the discouragement effect
and the incentive effect, but the incentive effect remains the stronger force for an optimally
chosen level of compensation.

14We assume such these announcements must be truthful. Allowing for the possibility that the contest
designer misreports effort levels and analyzing strategic consequences is left for future research.
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5.2 Winner’s effort

Next, consider a contest designer who is only interested in winner’s effort. In other words,
a player’s effort is only valuable if the respective player also wins the contest. In a repeated
contest for mandates, the contest designer prefers to give the mandate to a strong winner,
with whom he enters into a contract. The loser is not contracted. Thus, the contest
designer cannot utilize the contender’s effort.

However, the contest for a mandate remains a noisy process (depending on b). With
some probability, a player can win the contest even if he exerts a relatively low level
of effort. In this case, the incumbent’s high effort is wasted from the contest designer’s
perspective. By contrast, we assume that the contest designer always benefits from the
incumbent’s early effort irrespective of whether the incumbent wins the contest. This
reflects the interpretation of early effort as effort in implementation during a current
project. Formally, the contest designer sets the cost of early effort b to maximize a variant
of rent extraction ρW , which is given by

max
b

ρW (b, δ) = 1∑∞
k=1 δ

k−1 (
∞∑
k=1

δk−1(pi,kxi,k + (1 − pi,k)xj,k + b · di,k)).

The players observe b and optimally choose their levels of effort and early effort. The
players’ behavior is given by Lemmas 4, 5 and 6.

Then, rent extraction ρW is summarized in Proposition 4.

Proposition 4. Consider a contest designer that is interested in maximizing winner’s
effort. Then, rent extraction is

ρW (b,∞) =


1
4 if b ≥ 1,
1
4 + δ(2−b(1−b)(9−8b))

4b(4b2(1+δ)−5bδ+δ) if 1
2 < b < 1,

1
4 + 3bδ

4(1−δ(1−b)) if b ≤ 1
2 .

A contest designer who maximizes rent extraction optimally sets b = 1/2.

The proof is in Appendix A.8. Figure 9 illustrates the results of Proposition 4. When
the contest designer maximizes winner’s effort instead of total effort, rent extraction
changes depending on the value of b. In the area of full discouragement (b < 1/2), winner’s
effort is very close to total effort, because the incumbent wins all contests after the first one
with certainty. Only in the first contest, both players have a positive chance of winning,
such that also the loser has exerted positive effort, which the contest designer does not
value. In the area of partial discouragement (b ∈ (1/2, 1)), the contender exerts some
positive effort in every contest. Therefore, in every contest, the loser exerts positive effort
that is not valuable to the contest designer. The incumbent, who exerts more effort, also
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wins with higher probability.15 In the area of no discouragement (b > 1), there is no
incumbency advantage and the incumbent exerts exactly as much effort as the contender.
Therefore, in every contest, the contest designer does not value half of players’ total effort.
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2
1

b

1

4

1

ρW (b,∞)

δ=0.99

δ=0.9

δ=0.75

δ=0.5

Figure 9: Rent extraction depending on δ, where the contest designer maximizes winner’s
effort.

Proposition 4 shows that a winner’s effort maximizing contest designer prefers to
always set b = 1/2, irrespective of δ. In this case, the incumbent always fully discourages
the contender who exerts no effort, and the incumbent wins all contests after the first
with certainty in equilibrium. This result differs from the optimal cost of early effort
when the contest designer values both players’ efforts (Proposition 1). In this case, the
contender always exerts positive effort, which gives him a positive chance of winning each
contest. When concentrating on winner’s effort, this structure cannot be optimal because
it implies that the contest designer induces some positive level of effort that he does not
value. Consequently, he imposes a structure in which all effort in the contest comes from
the winner.

6 Conclusion

This paper introduces endogenous incumbency as a tool a designer of repeated contests
can use to incentivize players to increase intensity. The contest designer provides the
incumbent with the opportunity to be active in the contest before the contender enters.
This opportunity may (i) yield a mover advantage and (ii) may also be more cost effective
for the incumbent. Therefore, in each contest, the reward of winning is not only the

15Note that there is a discontinuity in rent extraction for b = 1. At this point, the incumbent shifts his
effort from the investment stage to the competition stage. In the investment stage, the contest designer
always values the incumbent’s effort irrespective of whether he wins. In the competition stage, the contest
designer only values the incumbent’s effort if he wins, which happens with probability 1/2 in equilibrium.
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present period’s prize, but also the opportunity to become the incumbent in the next
contest, which implicitly raises the stakes in each contest. At the same time, this comes at
the cost of a permanent asymmetry between the incumbent and the contender.

We find that an incumbent only chooses to exert early effort if it is cheaper than regular
effort. Depending on the cost advantage’s size, he either partially or fully discourages the
contender from competition. However, this is not to the detriment of the contest designer,
who enjoys increased rent extraction compared to independent lottery contests without
endogenous incumbency. Therefore, we show that the contest designer prefers to introduce
endogenous asymmetry into an ex-ante symmetric game and provides a cost advantage as
well as a mover advantage.

By partially compensating early effort, the contest designer balances the incentive
effect and the discouragement effect. We find that a moderate incumbency advantage is
effort-maximizing, so that the incumbent partially discourages the contender, whose level
of effort remains positive in equilibrium. Consequently, the outcome of every contest is
uncertain, and the incumbency status is at stake in every period.

In addition, we consider the case of cooperative equilibria, where players follow grim-
trigger strategies. Interestingly, for any discount factor, a contest designer can employ
endogenous incumbency with a sufficiently low cost of early effort to preclude such
cooperative behavior from being sustainable.

Given that the contest designer sets the cost of early effort optimally, rent extraction
is always higher if early effort is observable than if early effort is unobservable. The
latter case misses the commitment opportunity and decreases the value of becoming the
incumbent. Therefore, the contest designer always has an incentive to publicly announce
the level of the incumbent’s early effort. We also account for a contest designer who solely
values the winner’s effort. Then, the contest designer compensates the incumbent’s early
effort just enough such that the incumbent fully discourages the contender.

In procurement, suppliers fight for mandates issued by the same firm again and again.
Many firms utilize preferred supplier programs that give some preferential treatment
to suppliers who, among other criteria, shine in current projects for which they have
already been contracted. Our findings suggest that those preferred supplier programs
may be profitable even in the absence of synergy effects, if the preferred supplier position
is conditional on performance in a current project. Although such a preferred partner
program creates an asymmetry between suppliers by design, it motivates them to work
harder to attain this incumbency position.
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Möller, M. (2012). Incentives versus competitive balance. Economics Letters,
117(2):505–508.

Münster, J. (2007). Contests with investment. Managerial and Decision Economics,
28:849–862.
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A Appendix

A.1 Proof of Lemma 2

In competition stage Ck, player i’s maximization problem is

πCi,k = xi,k + di,k
xi,k + xj,k + di,k

(1 + δπIi,k+1) +
(

1 − xi,k + di,k
xi,k + xj,k + di,k

)
δπCj,k+1 − xi,k,

and player j’s maximization problem is

πCj,k = xj,k
xi,k + xj,k + di,k

(1 + δπIi,k+1) +
(

1 − xj,k
xi,k + xj,k + di,k

)
δπCj,k+1 − xj,k.
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Solving the two maximization problems and using ψk = 1 + δ(πIk+1 − πCk+1) yields

xi,k = ψk
4 − di,k,

xj,k = ψk
4 .

Since efforts are nonnegative, the above solution is only valid for di,k ≤ ψk/4. Otherwise,
player i exerts zero effort in optimum. In this case, effort of player j is given by player j’s
best response to xi,k = 0, which is

xj,k =
√
di,kψk − di,k.

Also, player j’s effort must be nonnegative. Therefore, the above solution is only valid for
di,k ∈ [ψk/4, ψk]. If instead di,k > ψk, player j exerts zero effort in optimum.

Together, the equilibrium levels conditional on the value of di,k are

x∗
i,k =


ψk

4 − di,k if di,k ≤ ψk

4 ,

0 if di,k > ψk

4 ,

x∗
j,k =


ψk

4 if di,k ≤ ψk

4 ,√
di,kψk − di,k if ψk

4 < di,k < ψk,

0 if di,k ≥ ψk,

Expected payoffs in competition stage Ck are then given by

πCi,k(x∗
i,k, x

∗
j,k) =


1
4ψk + δπCj,k+1 + di,k if di,k ≤ ψk

4 ,√
di,kψk + δπCj,k+1 if ψk

4 < di,k < ψk,

ψk + δπCj,k+1 if di,k ≥ ψk,

πCj,k(x∗
i,k, x

∗
j,k) =


1
4ψk + δπCj,k+1 if di,k ≤ ψk

4 ,

ψk + δπCj,k+1 + di,k − 2
√
di,kψk if ψk

4 < di,k < ψk,

δπCj,k+1 if di,k ≥ ψk.

which proves Lemma 1.
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A.2 Proof of Lemma 3

Using the expected payoffs given by Lemma 2, player i’s maximization problem is given by

max
di,k

πIi,k =


1
4ψk + δπCj,k+1 + di,k − bdi,k if di,k ≤ 1

4ψk,√
di,kψk + δπCj,k+1 − bdi,k if 1

4ψk < di,k < ψk,

ψk + δπCj,k+1 − bdi,k if di,k ≥ ψk.

For each case, we solve the maximization problem separately, Afterwards, we compare the
payoffs of the three cases for a given b to determine player i’s reaction function d∗

i,k(b).

Case 1: di,k ≤ 1
4ψk

Obviously, ∂πI
i,k

∂di,k
= 1 − b is positive for b < 1 and negative for b > 1. Then, di,k is given by

di,k =


1
4ψk if b < 1,

[0, 1
4ψk] if b = 1,

0 if b > 1.

and the incumbent’s corresponding payoff is

πIi,k =


(2−b)ψk

4 + δπCj,k+1 if b < 1,
ψk

4 + δπCj,k+1 if b ≥ 1.

Case 2: di,k ∈ (ψk/4, ψk)
Maximization yields di,k+1 = (ψk)/(4b2). However, the solution is only valid for (ψk)/(4b2) ∈
((ψk)/4, ψk). If b ≥ 1, then (ψk)/(4b2) ≤ (ψk)/4, so the lower bound of the interval is
optimal. If b < 1/2, then (ψk)/(4b2) ≥ ψk, so the upper bound of the interval is optimal.
Therefore,

di,k =


ψk if b ≤ 1

2 ,

ψk

4b2 if 1
2 < b < 1,

1
4ψk if b ≥ 1,

πi,k =


ψk(1 − b) + δπCj,k+1 if b ≤ 1

2 ,

ψk

4b + δπCj,k+1 if 1
2 < b < 1,

(2−b)ψk

4 + δπCj,k+1 if b ≥ 1.
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Case 3: di,k ≥ ψk

Obviously, ∂πi,k

∂di,k
= −b is negative for all b > 0. Therefore,

di,k = ψk,

πi,k = ψk(1 − b) + δπCj,k+1.

Given the the case-dependent equilibrium payoffs for all possible values of b, we can
now determine the optimal d∗

i,k(b). We identify three intervals, i.e., b ≤ 1/2, b ∈ (1/2, 1)
and b ≥ 1. Notice that fixing b implies a fixed ψk as well in equilibrium. For these three
ranges of b, we now determine the optimal d∗

i,k(b).

If b ≤ 1
2 , then

ψk(1 − b) + δπCj,k+1 >
(2 − b)ψk

4 + δπCj,k+1 ⇔ b <
2
3 ,

which is always true if b < 1/2. Therefore,

d∗
i,k = ψk if b ≤ 1

2 .

If b ∈ (1/2, 1), then

ψk
4b + δπCj,k+1 > ψk + δπCj,k+1 − bψk ⇔ (2b− 1)2 > 0,

and

ψk
4b + δπCj,k+1 >

ψk(2 − b)
4 + δπCj,k+1 ⇔ (b− 1)2 > 0,

are both always true. Therefore,

d∗
i,k = ψk

4b2 if 1
2 < b < 1.

If b ≥ 1, then

ψk
4 + δπCi,k+1 ≥ ψk(2 − b)

4 + δπCj,k+1 ⇔ b ≥ 1,
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and

ψk
4 + δπCj,k+1 > ψk + δπCj,k+1 − bψk ⇔ b ≥ 3

4 ,

which are both always true for b ≥ 1.
Therefore, we can combine the three cases and obtain

d∗
i,k =


ψk if b ≤ 1

2 ,

ψk

4b2 if 1
2 < b < 1,

0 if b ≥ 1,

which proves Lemma 3.

A.3 Proof of Lemmas 4, 5, 6 and Corollary 2

To prove the three lemmas, we first solve the finite, K-contest game by backward induction.
Then, we use Theorem 3.3 from Fudenberg and Levine (1983) to obtain the competitive
equilibrium of the infinite game.

For b ≥ 1 in the finite game, Lemma 3 yields d∗
i,k = 0 ∀k ∈ {2, ..., K}. Therefore, Lemma

2 and Lemma 3 immediately reveal πIi,k = πCj,k for all k, so ψk = 1 and xi,k = xj,k = 1/4.
Now assume b ≤ 1/2 in the finite game. By Lemma 2 and Lemma 3, the contender

exerts xj,k = 0, and the incumbent exerts some positive level of early effort. Therefore,
the contender wins with probability zero in equilibrium in every contest and obtains an
equilibrium payoff of πCj,k = 0 for all k. Given that ψk = 1 + δ(πIi,k+1 − πCj,k+1), we can
insert the values of πIi,k+1 and πCj,k+1 from Lemma 2 and Lemma 3 and obtain

ψk = 1 + δ(1 − b)ψk+1.

From that we can immediately see that ψk is increasing in δ and decreasing in b. We now
show that

ψk = 1 − (δ(1 − b))K−k+1

1 − δ(1 − b) (6)

for all k ∈ {1, ..., K} by induction, where the base case covers period K and the induction
step is from k + 1 to k.

In period K, there is no next period, so continuation payoffs of winning and losing are
identical, meaning ψK = 1. Indeed, from (6), we have

ψK = 1 − (δ(1 − b))K−K+1

1 − δ(1 − b) = 1.
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For the induction step, assume the statement holds for k + 1. Then,

ψk = 1 + δ(1 − b)ψk+1 = 1 + δ(1 + b)1 − (δ(1 − b))K−k

1 − δ(1 − b)

= 1 − δ(1 − b) + δ(1 − b)(1 − (δ(1 − b))K−k)
1 − δ(1 − b) = 1 + δ(1 − b)(1 − (δ(1 − b))K−k − 1)

1 − δ(1 − b)

= 1 − (δ(1 − b))K−k+1

1 − δ(1 − b) .

This concludes the proof of (6). From Lemma 2 and Lemma 3 we then immediately get

d∗
i,k = 1 − (δ(1 − b))K−k+1

1 − δ(1 − b) , xi,k = xj,k = 0.

Now assume b ∈ (1/2, 1) in the finite game. Given that ψk = 1 + δ(πIi,k+1 − πCj,k+1),
inserting continuation payoffs from Lemma 2 and Lemma 3 yields

ψk = 1 + δ(ψk+1

4b + δπCj,k+2 − ψk+1 − δπCj,k+2 − ψk+1

4b2 + ψk+1

b
)

= 1 + δ(−ψk+1 + ψk+1

4b − ψk+1

4b2 + ψk+1

b
)

= 1 + δψk+1(
5b− 1

4b2 − 1)

We now show by induction that

ψk = 1 − (δA)K−k+1

1 − δA
, (7)

where A := 5b−1
4b2 − 1.

The base case is given by

ψK = 1 − (δA)K−K+1

1 − δA
= 1.

In the induction step, assume that the statement holds for k + 1. Then,

ψk = 1 + δAψk+1 = 1 + δA
1 − (δA)K−k

1 − δA
= 1 − δA+ δA(1 − (δA)K−k)

1 − δA

= 1 − (δA)K−k+1

1 − δA
,

which proves (7). Inserting this expression for ψk into the respective values for d∗
i,k and

xj,k yields
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d∗
i,k = 1 − (δA)K−k+1

(1 − δA)4b2

xi,k = 0

xj,k = (1 − (δA)K−k+1)(2b− 1)
(1 − δA)4b2

The above expressions cover equilibrium behavior in the finite, K-contest game for all
contests k ≥ 2. In the first contest, player’s behavior is different, as there is no incumbent.
Nonetheless, the prize sum in the first contest ψ1 is given by the above expressions for ψk
above, dependent on b. Then, players exert effort equal to a quarter of the prize in the
unbiased first contest:

x1,1 = x2,1 =


1
4 if b ≥ 1
1
4

1−(δA)K−k+1

1−δA if 1
2 < b < 1

1
4

1−(δ(1−b))K−k+1

1−δ(1−b) if 0 < b ≤ 1
2 .

This result for the first contest, together with the above results of contests 2, ..., K
constitute the unique subgame-perfect Nash equilibrium of the finite game. Let gK denote
the subgame perfect Nash equilibrium for K ∈ N. Then, Theorem 3.3 from Fudenberg
and Levine (1983) states that g∗ = lim

K→∞
gK is a subgame perfect Nash equilibrium of the

infinite game (for T (n) = n and ϵn = 0 ∀n, in their notation). Therefore, the expressions
above give, for K → ∞, a subgame perfect Nash equilibrium of the infinite game. This
directly leads to the results of Lemmas 4, 5 and 6 and Corollary 2.

A.4 Proof of Proposition 1

Rent extraction is given by

ρ(b, δ) = 1∑∞
k=1 δ

k−1 (2xi,1 +
∞∑
k=2

δk−1Ek).

We now insert the results from Lemmas 4, 5 and 6 and Corollaries 2 and 3 into this
expression.

For b ≥ 1 this yields

ρ(b, δ) = (1 − δ)(2 · 1
4 +

∞∑
k=2

δk−1 · 1
2) = 1

2 .
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For b ∈ (1/2, 1) this yields

ρ(b, δ) = (1 − δ)(2 · 1
4(1 − δA) +

∞∑
k=2

δk−1 3b− 1
4b2

1
1 − δA

)

= 1 − δ

2(1 − δA) + 3b− 1
4b2 · 1 − δ

1 − δA
· δ

1 − δ
= 1 − δ

2(1 − δA) + 3b− 1
4b2 · δ

1 − δA

= 1
2 + δb(−8b+ 11) − 3δ

8b2 + δ(8b2 − 10b+ 2) .

For b ∈ (0, 1/2) this yields

ρ(b, δ) = (1 − δ)(2 · 1
4(1 − δ(1 − b)) +

∞∑
k=2

δk−1 · b · 1
1 − δ(1 − b))

= 1 − δ

2(1 − δ(1 − b)) + b · 1 − δ

1 − δ(1 − b) · δ

1 − δ
= 1

2 + δb

2(1 − δ + δb) .

This finalizes equilibrium rent extraction for all values of b. One can quickly verify that for
b ≤ 1/2, rent extraction is increasing in b. For b ∈ (1/2, 1), ρ(b, δ) has a local maximum at

b∗ = δ +
√

9 − 5δ + 3
δ + 11 .

which is for all δ the global maximum of ρ(b, δ).

A.5 Proof of Proposition 2

Consider the grim trigger strategy T (b, δ). In what follows, we determine the conditions
for which the profile of grim trigger strategies forms a subgame perfect equilibrium of the
infinite game. To do so, we fix some contest k̄ ≥ 1 and consider the following two cases.

Case 1: Some deviation has already occurred before k̄

Assume that some deviation from cooperation has already occurred in a previous contest.
Then, both players play the effort levels from the competitive equilibrium in their grim
trigger strategies, which is by Lemmas 4, 5 and 6 a combination of mutual best responses.

Case 2: No deviation until k̄ − 1
Assume that both players have cooperated in all previous contests. Consider a unilateral
deviation by some player p whereas the other player −p follows his grim trigger strategy.

Assume player p deviates from T (b, δ) in competition stage k̄. Given that the other
player follows the grim trigger strategy, the best deviation is to exert an infinitesimally
small effort level ϵ > 0 to win the contest with certainty. In line with the usual conventions,
deviation yields a payoff equal to 1 in stage k̄. In all subsequent contests, both players
will follow behavior of the competitive equilibrium: player −p has pulled the trigger and
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punishes forever and player p optimally reacts to the punishment which is the effort level of
the competitive equilibrium. Let πC

D,k̄
denote the payoff stream that results from deviation

in competition stage k̄, from the perspective of period k̄. Then, the deviating player p
generates

πCD,k̄ = 1 + δπIi,k̄+1,

where πI
i,k̄+1 is the incumbent’s continuation payoff in investment stage k̄ + 1 that results

from the competitive equilibrium.
If player p continues to follow the grim trigger strategy, his payoff stream is given by

πCT,k̄ =
∞∑
k=0

1
2δ

k = 1
2(1 − δ) .

The deviation is profitable if πC
D,k̄

> πC
T,k̄

, that is,

1 + δπIi,k̄+1 >
1

2(1 − δ) . (8)

Lemma 7. The payoff πI
i,k̄+1 is given by

πIi,k̄+1 =


1

4(1−δ) if b ≥ 1
A

1−δA + (2b−1)2

(1−δA)(1−δ)4b2 if 1
2 < b < 1

1−b
1−δ(1−b) if b ≤ 1

2

where A = 5b−1
4b2 − 1.

The proof of Lemma 7 is relegated to Appendix A.6. Inserting Lemma 7 in Equation
(8) yields

πCD,k̄ > πCT,k̄ ⇔


δ < 2

3 if b ≥ 1,

δ < 4b2

4b2+3b−1 if 1
2 < b < 1,

δ < 1
1+b if b ≤ 1

2 .

(9)

Equation 9 gives conditions under which the profitable deviation precludes the coopera-
tive equilibrium. Otherwise, since k̄ is arbitrary, there does not exist a profitable deviation
from the cooperative equilibrium in any competition stage. Therefore, we additionally
check whether there exists a profitable deviation in an investment stage.

Assume player p deviates from T (b, δ) in investment stage k̄. A deviation in the
investment stage Ik̄ implies that both players follow the competitive equilibrium from k̄

onward. Let πI
D,k̄

denote the payoff stream that results from a deviation in investment
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stage k̄, from the perspective of period k̄. Then, the deviating player p generates

πID,k̄ = Πk̄ + δΠk̄+1

where Πk̄ is the immediate payoff in period k̄, and Πk̄+1 is the continuation payoff in period
k̄ + 1. Note that

Πk̄+1 = pi,kπ
I
i,k̄+1 + (1 − pi,k)πCj,k̄+1

where pi,k is the deviator’s probability of winning. As πI
i,k̄+1 ≥ πC

j,k̄+1, the continuation
payoff Πk+1 is highest for pi,k = 1, where it is equal to πI

i,k̄+1. Therefore, Πk̄+1 ≤ πI
i,k̄+1. In

addition, the immediate payoff in the period of deviation Πk̄ is strictly smaller than one.
Therefore, we have

Πk̄ + δΠk+1 < 1 + δπIi,k̄+1 ⇔ πIk̄,D < πCk̄,D,

that is, for any k̄ and b > 0, deviating in investment stage k̄ is less profitable than
deviating in competition stage k̄. Therefore, Equation 9 yields the conditions for which
the cooperative equilibrium exists, that is

πk̄,CD ≤ πk̄,CT ⇔


δ ≥ 2

3 if b ≥ 1,

δ ≥ 4b2

4b2+3b−1 if 1
2 < b < 1,

δ ≥ 1
1+b if b ≤ 1

2 ,

which proves Proposition 2.

A.6 Proof of Lemma 7

We prove the three cases separately. Suppose first b ≥ 1. Then, for all k, di,k = 0 and
xi,k = xj,k = 1/4. Therefore πIi,k = ∑∞

k=0
1
4δ
k for all k. In particular, also for k = 2 we have

πIi,2 = 1
4(1 − δ) .

Suppose now b ∈ (1/2, 1). We calculate the payoff πIi,2 of the infinite game as the limit
of payoffs πIi,2 of the K-contest game and then make again use of Theorem 3.3 from
Fudenberg and Levine (1983). Then, according to Lemma 2 and Lemma 3, we can express
πCj,k recursively:

πCj,k = ψk + δπCj,k+1 + ψk
4b2 − 2

√
ψ2
k

4b2 = (2b− 1)2

4b2 ψk + δπCj,k+1.
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By induction we show that πCj,k has the representation

πCj,k = (2b− 1)2

4b2

K∑
n=k

δn−kψn.

The base case k = K is clear from ψK = 1 and Lemma 2. Induction step from k + 1 to k:

πCj,k = (2b− 1)2

4b2 ψk + δπCj,k+1 = (2b− 1)2

4b2 ψk + δ
(2b− 1)2

4b2

K∑
n=k+1

δn−(k+1)ψn

= (2b− 1)2

4b2 (ψk +
K∑

n=k+1
δn−kψn) = (2b− 1)2

4b2

K∑
n=k

δn−kψn.

Inserting this into πIi,k from Lemma 3, we obtain

πIi,k = 1
4bψk + δπCj,k+1 = 1

4bψk + δ((2b− 1)2

4b2

K∑
n=k+1

δn−(k+1)ψn)

= 1
4bψk + δ0 (2b− 1)2

4b2 ψk − δ0 (2b− 1)2

4b2 ψk + δ
(2b− 1)2

4b2

K∑
n=k+1

δn−(k+1)ψn =

=
(

5b− 1
4b2 − 1

)
ψk + (2b− 1)2

4b2

K∑
n=k

δn−kψn.

From Lemma 5, we insert the value of ψn into this expression and obtain

πIj,k = A · 1 − (δA)K−k+1

1 − δA
+ (2b− 1)2

4b2

K∑
n=k

δn−k 1 − (δA)K−n+1

1 − δA

= A · 1 − (δA)K−k+1

1 − δA
+ (2b− 1)2

4b2(1 − δA)(
K∑
n=k

δn−k −
K∑
n=k

δK−k+1AK−n+1)

= A · 1 − (δA)K−k+1

1 − δA
+ (2b− 1)2

4b2(1 − δA)(
K−k∑
n=0

δn − δK−k+1
K−k+1∑
n=1

An)

= A · 1 − (δA)K−k+1

1 − δA
+ (2b− 1)2

4b2(1 − δA)(1 − δK−k+1

1 − δ
− δK−k+1A(1 − AK−k+1)

1 − A
).

Setting k = 2 and letting K → ∞ in this expression yields πIi,2 in the infinite game:

lim
K→∞

πIi,2 = A

1 − δA
+ (2b− 1)2

(1 − δA)(1 − δ)4b2 .

Suppose now b ∈ (0, 1/2). Then, from Lemma 4, πIi,k = (1 − b)ψk. Inserting the value of
ψk from Lemma 4 yields

πIi,k = (1 − b)1 − (δ(1 − b))K−k+1

1 − δ(1 − b) .
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Now, again, for k = 2 and K → ∞ we obtain

πIi,2 = (1 − b)
1 − δ(1 − b) ,

which finalizes the proof of the Lemma.

A.7 Proof Proposition 3

If early effort is unobservable, the maximization of players’ expected payoffs yields

x∗
i,k = 1

(1 + b)2ψk, x∗
j,k = b

(1 + b)2ψk,

and players’ payoffs are

πi,k = ψk
(1 + b)2 + δπj,k+1, πj,k = b2ψk

(1 + b)2 + δπj,k+1,

where, again, ψk = 1 + δπ∗
i,k+1 − δπ∗

j,k+1 denotes the effective prize sum of contest k.

To characterize the competitive equilibrium with unobservable early effort, we first
solve the finite, K-contest game by backward induction. Then, we use Theorem 3.3 from
Fudenberg and Levine (1983) to obtain the equilibrium of the infinite game.

For the finite game with unobservable early effort, we show by induction that the
effective prize in period k ≥ 2 is given by

ψk = 1 − (δB)K−k+1

1 − δB
, B = 1 − b

1 + b
.

The base case k = K is clear since ψK = 1. Induction step k + 1 → K:

ψk = 1 + δ(πi,k+1 − πj,k+1) = 1 + δ( ψk+1

(1 + b)2 − b2ψk+1

(1 + b)2 )

= 1 + δ(1 − b)
1 + b

ψk+1 = 1 + δB(1 − (δB)K−k)
1 − δB

= 1 − δB + δB(1 − (δB)K−k)
1 − δB

= 1 − (δB)K−k+1

1 − δB
.

Then, equilibrium efforts are

xi,k = 1
(1 + b)2

1 − (δB)K−k+1

1 − δB
,

xj,k = b

(1 + b)2
1 − (δB)K−k+1

1 − δB
.
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As the expression of ψk is also valid for k = 1 and players in the first contest both exert
effort of a quarter of the prize, we have

xi,1 = xj,1 = 1 − (δB)K
4(1 − δB) .

By Fudenberg and Levine (1983), we then have for the infinite game

xi,k = 1
(1 − δB)(1 + b)2 for k ≥ 2,

xj,k = b

(1 − δB)(1 + b)2 for k ≥ 2,

xi,1 = xj,1 = 1
4(1 − δB) .

Inserting these values into ρ(b, δ), we obtain

ρ(b, δ) = 1∑∞
k=1 δ

k−1 (2 1
4(1 − δB) +

∞∑
k=2

δk−1 2b
(1 − δB)(1 + b)2 )

= (1 − δ)( 1
2(1 − δB) + 2b

(1 − δB)(1 + b)2

∞∑
k=2

δk−1)

= 1 − δ

2(1 − δB) + 2bδ
(1 − δB)(1 + b)2 = (1 − δ)(1 + b)2 + 4bδ

2(1 + b)(1 + b− δ + δb)

= 1
2 + bδ(1 − b)

(1 + b)(1 + b− δ + δb) ,

which proves Proposition 3.

A.8 Proof Proposition 4

When the contest designer maximizes winner’s effort, rent extraction is given by

ρW (b, δ) = 1∑∞
k=1 δ

k−1 (2xi,1 +
∞∑
k=2

δk−1Wk), (10)

where Wk = pi,kxi,k + (1 − pi,k)xj,k + b · di,k) is the expected effort of the winner. Wk

depends on the incumbent’s probability of winning, which is given by Corollary 1. Therefore,
expected winner’s effort in the equilibrium of contest k ≥ 2 is given by

Wk =


1
4 if b ≥ 1
6b2−4b+1

8b3 ψk if 1
2 < b < 1

bψk if 0 ≤ b ≤ 1
2 .

(11)
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We can directly obtain expected winner’s effort in the first contest from Corollary 2. Then,
we use equation 11 and Lemmas 4, 5 and 6 to explicitly calculate ρW (b, δ). For b ≥ 1, we
can immediately see that

ρW (b, δ) = (1 − δ)
∞∑
k=1

δk−1 1
4 = 1

4 .

For b ∈ (1/2, 1), we have for A = (5b− 1)/(4b2) − 1:

ρW (b,∞) = (1 − δ)( 1
4(1 − δA) +

∞∑
k=2

δk−1 6b2 − 4b+ 1
8b3

1
1 − δA

)

= 1 − δ

4(1 − δA) + 6b2 − 4b+ 1
8b3 · 1 − δ

1 − δA

∞∑
k=2

δk−1

= 1 − δ

4(1 − δA) + 6b2 − 4b+ 1
8b3 · 1

1 − δA

= 2b3 − 2bδ(2 − b)(1 − b) + δ

2b (4b2(1 + δ) − 5bδ + δ) = 1
4 + δ(2 − b(1 − b)(9 − 8b))

4b (4b2(1 + δ) − 5bδ + δ) .

For b ≤ 1/2, we have

ρW (b,∞) = (1 − δ)( 1
4(1 − δ(1 − b)) +

∞∑
k=2

δk−1 · b · 1
1 − δ(1 − b))

= 1 − δ

4(1 − δ(1 − b)) + b · 1 − δ

1 − δ(1 − b)

∞∑
k=2

δk−1

= 1 − δ

4(1 − δ(1 − b)) + bδ

1 − δ(1 − b)

= (4b− 1)δ + 1
4(1 − δ(1 − b)) = 1

4 + 3bδ
4(1 − δ(1 − b)) ,

which finalizes the proof of Proposition 4.
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