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Abstract

This paper develops an endogenous growth model based on the idea of new

combinations of input factors as a growth mechanism. The model integrates

the idea of several technologies used simultaneously in producing final output.

Innovations are of the horizontal and vertical type and in addition of the type of

new technologies which can be combined with existing ones. All types of inno-

vations are endogenous and the occurrence of a new technology has stochastic

elements as well. This leads to endogenous dynamics in growth rates of final

output production.
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1 Introduction

In an empirical contribution Levin, Klevorick, Nelson and Winter (1995) made the

observation that R&D expenditures across manufacturing sectors in the U.S. are

very heterogenous. The argument put forward explaining these empirical facts re-

lies on the heterogeneity in technological opportunity across these sectors. These

opportunities might be bounded from above so that investments in R&D might

not pay off equally in all sectors. However new opportunities can show up if new

technologies are developed and can be combined with existing technologies used by

existing sectors. This is seen as one engine of growth by Levin, Klevorick, Nelson

and Winter (1995).

The role of integration of new production factors into the production technology for

goods was also stressed by Schumpeter (1912). From his point of view economic

development through new combinations was defined by the following five character-

istics:

• Production of new goods or new qualities of existing goods,

• introduction of new production technologies,

• opening of a new market,

• introduction of new factors into the production process,

• change in the organization of markets.

Clearly, the first two characteristics are able to produce exponential growth in the-

oretical models. These arguments have been heavily used by e.g. Romer (1990),

Grossman and Helpman (1991) or Aghion and Howitt (1992). However the forth ar-

gument for economic development has not been used extensively in modern growth

models. This paper will stress the role of new production factors in the process of

generating growth dynamics. The mechanism is based on the idea that new tech-

nologies, providing new input factors for final good production, can be combined

with existing production factors in order to yield technological progress.
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The idea of utilitizing new combinations in growth models has also been used by

Weitzman (1998). In his “Recombinant Growth Model”, parvise new combinations

of existing knowledge leads to growth that can be exponential. The aim of Weitz-

man’s (1998) article was to open up the black box of the generation process for new

technologies. However, the model presented there is very much based on combi-

natory mathematics and is not so much nested in the usual models of endogenous

economic growth. This might make it difficult to use the model in a mainstream eco-

nomic analysis as a building stone to work on economic problems beyond economic

growth.

The first aim of this paper is therefore to use the idea of new production factors as

a mechanism for economic development and a source of growth in an endogenous

growth model which is designed in accordance with modern growth models. By this,

it is attempted to open up the black box of how new technologies can lead to ongoing

gains in total factor productivity and hence economic growth. The model will use

standard assumptions about horizontal and vertical innovations and will add the

introduction of new technologies.

The second aim is to elaborate on an issue that is partially discussed in Levin,

Klevorick, Nelson and Winter (1995) and is not so much recognized by the new

growth theory. It is the possibility that innovative behavior of firms becomes harder

and harder the more developed an existing technology is. This might be true for

the horizontal and vertical dimension of innovation. It might be the case for one

sector of the economy which is already well developed, with many different varieties

of goods existing next to each other, it is harder to come up with yet a new variant.

But a similar argument might be true also within a particular variant of one sector.

The more technologically or qualitatively advanced this variant is, the harder it

becomes to design a new generation with an increased quality of that variant. Thus

new technologies might have a higher growth potential than older ones, regarding

this dimension of innovation.

(Endogenous) growth models of the first and second generation generally do not

take account of these “fishing out” effects. In general, long run exponential growth
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is produced in these models by making use of an ad hoc “standing on shoulders of

giants” argument. This is true for the horizontal as well as the vertical dimension of

innovation. Past progress in the degree of horizontal differentiation of input factors

or past progress in the quality level of goods improve the current opportunities

of R&D. This is the fundamental assumption guaranteeing economic growth. One

exception is, of course, the model in Jones (1995), where growth is generated by

an increasing degree of horizontal differentiation and the “standing on shoulders

of giants” effect might also be negative, i.e. a “fishing out” effect exists and it

becomes more difficult to invent new horizontal differentiated variants of goods as

more already exist. For long run growth it is then however necessary, that the

resources devoted to R&D must grow exponentially; this works as a replacement for

the “standing on shoulders of giants” assumption.

There is thus some lack of a justification of the “standing on shoulders of giants”

argument in the existing growth literature regarding models in the new growth

theory. This paper aims to fill this gap by explicitly taking account of a “fishing

out” effect in the horizontal dimension of innovation and by modelling the way

the “shoulders of giants” are created for the vertical dimension of innovation. At

the same time, the paper offers an analytically answer of how new technologies

affect growth. The mechanism behind this is partially the possibility of forming

new combinations of new technologies with existing ones. And second, if there are

many technologies present in the production technology of final goods, “fishing out”

effects in some technologies are not that problematic as new technologies with a

high growth potential can compensate for this. In the Schumpetrian sense it is the

introduction of new production factors in the process of producing final goods that

opens up new channels of growth.

The model developed below in the paper has some aspects in common with the

literature on general purpose technologies (see e.g. Helpman 1998). In this literature,

growth is generated as a consequence of major technology breakthroughs which are

followed up by less drastic technology changes yielding progress in productivity. A

model somewhat related to the present model is that of Aghion and Howitt (1998).
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This model extents the work in Aghion and Howitt (1992) by a second innovation

stage capturing the idea of invention of new general purpose technologies. This

model as well as others in Helpman (1998) are developed to study the effects of the

introduction of new general purpose technologies on e.g. productivity in the short

and in the long run. The present paper has something to add to this literature

as it captures endogenous introduction of new technologies, i.e. general purpose

technologies, as a rare event as well as endogenous horizontal and vertical innovations

as a common event. Therefore the dynamics of the growth rate of the economy can

be studied.

The paper is organized as follows. Section two gives the basic idea behind the

model by presenting an illustrative easy example of the modelling strategy to be

developed fully in the later sections. Section three presents the fully formulated

model and formalizes implications for the development of total factor productivity

and economic growth. Finally section four discusses the results and concludes.

2 The Basic Idea

Romer (1987) introduced the following production function which was subsequently

used in many (semi-)endogenous growth models. In a discrete formalization this

production technology is given by

Y = Lα
N∑

i=1

x1−α
i . (1)

One direct interpretation of this production technology is that a set of N horizontally

differentiated intermediate input factors of quantity xi can be used in combination

with labor, L, to yield final output Y . Since all workers in this setup can simultane-

ously make use of the N available variants of input factors, growth can be generated

by growth in N . However, for growth in N to be exponentially, a “standing on

shoulders of giants” argument has to be employed and no fishing out effects can be

present.

Now imagine a switch from production with technology (1) with one set of hori-

zontally differentiated input factors to a technology with two sets of differentiated
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input factors. These two sets of input factors can be thought of being two differ-

ent technology sectors or two different basic or general purpose technologies. One

production technique using these two technology sectors could be of the following

form

Y = Lα

(
N1∑
i=1

xα1
i

)(
N2∑
i=1

zα2
i

)
with α1 + α2 = 1− α. (2)

Simplifying the argument even further, suppose there were at the beginning N =

2 differentiated intermediate input factors in the production technology (1) and

production switched to the technology (2) with sets N1 = N2 = 2 input factors.

First, there were two input factors that could be combined with labor, but then

after the switch there are four combinations of input factors that can be combined

with labor to yield final output. This is the basic mechanism behind the fully

developed model in the sections to come.

What this exercise clarify, is that, first, the degree of horizontal differentiation in

one technology sector can be fixed and growth can still take place as long as new

technology sectors are developed. Second, vertical innovations are also not necessary

to create growth. In fact the productivity of intermediate input factors in final goods

production was normalized to one in the above example. Thus, this is an extreme

example of fishing out effects in both the horizontal as well as the vertical dimension

of innovation. Both types of innovation were bounded from above in the example

and still growth is possible by forming new combinations of new technology sector

inputs with existing ones.

In the more elaborate model below, the degree of horizontal differentiation and

vertical dimension of innovation are allowed to be determined endogenously by profit

seeking technology firms.

3 The Model

This section deals with the fully developed model and the basic assumptions will be

stated one by one in the following.
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3.1 Consumers

It is assumed that the economy allows for a two period overlapping generations

model where agents work only in their first period of life where they inelastically

supply one unit of labor. Savings in period τ build the capital stock of the economy

in period τ + 1. As will be shown later on, the economic environment is governed

by uncertainty. Agents are assumed to maximize expected life time utility given by

Uτ = Eτ

[
ln cτ +

1
1 + ρ

ln cτ+1

]
. (3)

where cτ is real consumption expenditure in period τ and ρ is the rate of time

preference. Eτ [·] is the expectation operator conditioned on information available

in period τ . The timing of events is as follows. At the beginning of the time period

the capital stock is given by past savings. Total factor productivity which will be

defined later is then revealed and with this knowledge firms decide on employment

and households on savings. Time is assumed to be discrete and all figures correspond

to the current time period τ if not stated differently.

Allowing for only two living periods can be justified in this context because the

model below deals with the influence of major technology changes, which in general

do not occur frequently. Therefore the time periods are interpreted in terms of

generations.

Maximization takes place subject to the intertemporal budget constraint for the

representative agent

cτ+1 = (1 + rτ+1)(wτ − cτ ),

where rτ+1 is the net interest rate and wτ is the real wage rate.

This leads directly to the optimality condition that individual savings sτ are given

by

sτ =
1

2 + ρ
wτ (4)

Due to the log preferences uncertainty seems to has disappeared in this optimality

condition. This is of course due to the independence of the propensity to save from
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the interest rate. Further, it is assumed that each representative agent supplies

inelastically one unit of labor in each period of time. The total population which

forms the labor force is assumed to be stationary although nothing in the model

would change if population grows over time. Aggregate individual assets form the

capital stock of the economy in the next period, i.e. Kτ+1 = 1
2+ρwτL. L denotes

the total working age population in the economy.

3.2 The Production Technology

The production technology of the model is assumed to be of a more general form

than in the introductory example in the preceding section. It takes the form

Y = Lα
M∏

j=1

Nj∑
i=1

(
λj,ixj,i

αj

)αj

with
M∑

j=1

αj = 1− α, (5)

where M is the number of technology sectors or general purpose technologies which

can be used in combination with labor L. Nj is the degree of horizontal differentia-

tion of the jth technology sector. λj,i denotes the quality level of the ith intermediate

input factor in technology j and is thus capturing the vertical innovation dimension.

In addition to the very simplified model in the preceding section, vertical innova-

tions are explicitly modelled here by changes in λj,i. Finally, xj,i is the quantity

of the ith intermediate input factor used in sector j. Due to the assumption that∑
αj = 1− α it is clear that this production function has constant returns to scale

in labor and intermediate input factors. The occurrence of the output elasticities in

the denominators of the above expression simplifies the following analysis without

affecting the general result of the model. Where it is appropriate, comments on the

implications of this simplifying assumption will be given.

3.3 Horizontal and Vertical Innovations

This section deals with the innovating behavior in established well known technology

sectors. This innovating behavior is driven by horizontal and vertical innovations. It

will be shown under what conditions these may lead to long run sustainable growth.
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The growth mechanism clearly is driven by the intermediate input factors. It is

assumed that each variant of these factors, regardless in which technology sector

it is used, is produced from one particular firm. As it will be assumed that fixed

costs in every period of time are involved in producing these factors, there is only

room for one producer which supplies the whole market with its particular variant.

Competitors will rather develop a new variant than compete within a market for an

existing variant in order to maximize profits. There are two technologies available

to produce the differentiated input factors. One is a monopolistic technology with

fixed costs and one is a competitive with constant marginal costs. It is assumed that

the monopolistic technology involves an up-front fixed cost in order to develop the

particular variant and constant marginal costs thereafter. The competitive technol-

ogy can be used to copy one particular variant. Fixed costs need not be incurred

with this technology, but marginal costs are higher by a factor γ > 1 than in the

case of the monopolistic technology.

The original developer of one particular variant of intermediate input factors has

to invest a fixed cost in every period of time in order to be able to produce this

variant. This is an application of the idea in Young (1998), but here the problem

is simplified to a more static environment where investment and production takes

place within the same period of time1. The fixed cost are in terms of the final good

of the economy, Y , and are given by the following real cost function

Fj,i =

 ηeµλj,i/λ̄τ−1αjY if λj,i ≥ λ̄τ−1,

ηeµαjYτ otherwise,
(6)

There are two cases for the fixed costs, one in which it is optimal for the producer to

increase the quality level of its particular variant, and one where increasing quality

does not pay and hence quality is not further improved.

Looking first at the case where quality improvement is desired. As can be seen

from the function (6) the fixed costs depend first on the desired quality level of

the intermediate input factor and, second, on the size of the market for which the

1In Young (1998) the production process is divided into a two period problem. In period one

the producer has to incur the fixed cost, production then takes place in period two.
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particular variant is directed. The higher the desired quality level, the higher are the

fixed costs exactly as in Young (1998). There is a “standing on shoulders of giants”

effect through the dependence on a quality index λ̄τ−1 determined in the preceding

period. The higher this quality index in the preceding period is, the lower are the

fixed costs for a given new quality level. This quality index represents the state of

the art in intermediate input factor quality and is determined by intermediate input

factor producers active in R&D for enhancing quality. It is defined by a geometric

mean according to2

ln λ̄τ =
M∑

j=1

Nj∑
i=1

h(λj,i − λ̄τ−1)∑M
j=1

∑Nj

i=1 h(λj,i − λ̄τ−1)
lnλj,i, (7)

where h(z) = 0 for z = 0 and h(z) = 1 for z > 0. Hence, only qualities enter

this geometric mean for firms which set their quality level above the index of the

preceding period. The economic intuition behind this assumption is the idea that

quality improvements in period τ become common knowledge in period τ +1. Firms

who did not improve quality above the index in period τ do not contribute to this

common knowledge. This way of modelling the “standing on shoulders of giants”

effect has the advantage that it can be traced back where in the economy it originates.

Therefore, this a way of partly giving a meaningful foundation to this effect.

It is assumed that the number of firms and sectors is large enough so that no single

producer of intermediate input factors has a significant influence on the quality

index. Therefore each producer neglects its influence on λ̄ when choosing its λj,i.

This has the effect that all intertemporal aspects are removed from the optimization

problem of the individual firm.

The second argument of the function (6) involves the size of the technology sector

for which the particular variant is designed for. This size is given by αjY which is

the part of sector j in final output Y of the economy. The larger one sector, the

higher are the fixed costs for setting up a variant of the intermediate input factors

for that sector. This assumption should reflect a “fishing out” effect implying that

2The assumption of that particular mean is not critical for the major results to be developed

below. If this assumption is changed it will only affect the result (23) below.
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it is harder to develop a product for a market that is already highly developed.

If the market environment is such that it is not beneficiary to improve the quality

level above the average level, there is still a need for fixed costs. These fixed costs

are justified by the plausible assumption that even if product quality is kept fixed

relative to the average, there is still a necessity to keep the product technologically

up to date or compatible with other developing input factors on the market. The

fixed costs are then only proportionate to the size of the technology sector for which

the input factor is developed for.

After the fixed costs for research and development have been incurred in order to

raise product quality, the firm can produce its particular variant at constant marginal

costs. The production technology is assumed to be linear with unit productivity in

the single input factor which is capital. The capital has to be rented from the

household sector at the gross interest rate r + δ, where δ is the rate of depreciation.

The competitive production technology does not require fixed costs but has a capital

productivity of γ−1.

What still needs to be determined is when and to what extent quality improvements

above the index are desirable for a firm producing a particular variant of the inter-

mediate input factors. As is indicated by the assumptions above, the firm is assumed

to set a limit price by the factor γ over marginal costs. The price χji for variant i

in sector j is thus given by γ(r + δ). Hence prices for all variants are equal, χji = χ.

The demand function for variant i in sector j is determined by its marginal product

and is given by

xj,i = αjχ
− 1

1−αj λ

αj
1−αj

j,i L
α

1−αj

∏
k 6=j

[
Nk∑
h=1

(
λk,hxk,h

αk

)αk
] 1

1−αj

. (8)

It is important to see the dependence of demand on the quality level through the

term λ

αj
1−αj

j,i . The demand increases with product quality in a way that is determined

by the importance of the particular sector j in final goods production measured by

the output elasticity αj . The greater this elasticity, the higher is the effect of product

quality on demand. This is what will determine the results below.

Since prices χ are already determined by the limit pricing rule, the only variable
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which is left for maximizing profits is the quality level λj,i. Intermediate input factor

producers set this quality level in such a way that it maximizes net profits given by

πj,i = (γ − 1)(r + δ)xj,i − Fj,i, (9)

where xj,i and Fj,i are given by equations (8) and (6) above.

Maximization of (9) with respect to λj,i gives the optimality conditions

λj,iτ =


1
µ

αj

1−αj
λ̄τ−1 if 1

µ
αj

1−αj
> 1,

λ̄τ−1 else
(10)

which are quite analogous to Young (1998). This result already incorporates the

assumption that input factor producers in each technology sector enter the market

as long net profits given by (9) are positive. In equilibrium these profits are zero.

This result directly shows the influence of the output elasticity αj on the development

of the quality level. If one sector j is important, quality grows rapidly, but if the

other case prevails, quality behaves like the average past quality level. A high output

elasticity works as an incentive to invest in quality of the variants in a particular

technology sector j. Therefore, important sectors are contributing much to the

development of quality and thereby creating a positive spillover effect onto less

important technologies.

With the result for quality growth in intermediate input factors in hands, the fixed

costs for each input factor producer are determined. This in turn determines the

number of input factor producers in each technology sector who compete monopo-

listically. This number drives net profits down to zero when no incentive for further

market entry exists and is given by3

Nj =
γ − 1

γ

1

ηe
µ

λj,i,τ
λ̄τ−1

, (11)

3Strictly speaking, Nj is given by the integer part of the right hand side of equation (11) due

to the discrete structure of the model. Then, there would be some net profits left for intermediate

input factor producers. Assuming that these firms are equally owned by consumers and that these

profits are equally distributed among them, restores equilibrium. Additionally, if Nj is large, there

is not a significant difference between the right hand side of (11) and its integer part. To avoid

heavy notation in the following, all calculations are based on the exact result in (11).
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where the ratio λj,i,τ

λ̄τ−1
is given by (10). Two forces work in order to limit the number

of input factor producers in each sector. First, if the output elasticity is large there

are large incentives to invest in the quality level which drives up the fixed costs.

Second, if a technology sector is large, i.e. a high αj , the fixed costs component

which adjusts for sector size is large as well, also driving up fixed costs. In the

decentralized optimum the number of firms in the market is given by the above

figure.

As can be seen from the results so far, the horizontal dimension of innovation, i.e.

the number of variants of intermediate input factors per technology sector, can not

cause long run growth. For a given growth rate of the quality level of intermediate

input factors the number of horizontally differentiated input factors is stationary.

If the number of technology sectors M is constant over time, the only mechanism

that creates long run sustainable exponential growth is an increasing level of quality

of intermediate input factors. As can be seen from equation (10), which determines

the optimal development of the quality level over time, this is possible as long as

there is at least one technology sector with an output elasticity which satisfies the

condition 1
µ

αj

1−αj
> 1. This sector is then responsible for creating growth in the

quality levels and creating a positive externality for the remaining technologies. If

this is not the case, growth in quality will not take place at all.

On the other hand, if M increases over time, the output elasticities αj must become

smaller on average. This means that, ceteris paribus, the incentive to invest in the

quality level of intermediate input factors decreases. At some point the incentive is

so small, that the quality level is given by the average level in the preceding period

of time, as can be seen from the optimality conditions (10). This might happen for

all sectors so that in general the vertical dimension of innovation, i.e. growth in the

quality level, does not guarantee long run exponential growth. But the source of

long run economic growth in this case can be already seen if the production function
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(5) is written in reduced form as4

Y = (1− α)−(1−α)LαK1−α
M∏

j=1

(
N

1−αj

j λ̄
αj

j

)
. (12)

This reduced form can be obtained by using the marginal product condition for one

variant of the intermediate input factor in one sector and aggregating over all sectors.

Additionally one has to use the capital market resource constrain that xj,i = Kj

Nj
,

with Kj the capital stock used in technology sector j. Equilibrium in the capital

market requires that the interest rate is equal for all technology sectors which implies
Kj

Kl
= αj

αl
and that K =

∑
Kj .

Total factor productivity will play an important role in what follows in the next

subsections. It is defined as

TFP =
M∏

j=1

(
N

1−αj

j λ̄
αj

j

)
. (13)

From the reduced from (12) one can easily see that despite a stationary Nj and

possibly also a stationary5 λ̄j = 1
Nj

∑Nj

i=1 λj,i growth is still possible if M , the num-

ber of technology sectors, grows linearly. The economic intuition behind this is

the formalization of the idea of forming new combinations of input factors of new

technologies with existing ones. In the production function for final output this is

realized through the multiplicative influence of the degrees of horizontal differentia-

tion Nj . The issue addressed in the next subsection is how new technology sectors

are created and get integrated into the production technology for final output.

3.4 The Introduction of New Technologies

The creation of new technology sectors is in general governed by more uncertainty

than the introduction of new good in a well known and established industry. Some-

thing fundamentally new must created which might not be that controllable as the

creation of a new variant of an intermediate input factor in an existing technology

sector.
4Using the expression λj,ixj,i instead of

λj,ixj,i

αj
in the production function (5) would result in

an additional multiplicative term
Q

α
αj

j . Implications of this term are discussed further below.
5Due to the symmetry in the model λj,i = λj,k for all i and k ∈ {1, ..., Nj}.
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The assumptions in this process are as follows. There is an endogenous number of

research firms engaged in producing new technology sectors embodied in a single

variant of an intermediate input factor. Once one of these firms has discovered this

variant of the new technology sector it has for one period the exclusive knowledge of

how this new technology is produced. After this period this knowledge diffuses and

potential other firms can set up their own variants in that sector. Thus, the case

of horizontally differentiated sectors which was analyzed in the preceding section

applies only to technology sectors which are old in the sense that the necessary

knowledge has already been diffused.

With these assumptions, it is clear that the degree of horizontal differentiation of

any new technology is Nn = 16. The output elasticity of such a new technology, if

integrated into the production technology for final output, is denoted by αn.

Unfortunately, the process of integrating new technologies can not be analyzed for

the general case of unrestricted output elasticities αj . Since it must be true that∑
αj = 1− α before and after the integration of new technology sectors, the unre-

stricted case would imply unspecified changes in the output elasticities of already

established sectors which prohibits clear cut statements about the behavior of the

economy. This can be avoided by assuming a clear process for the development of

the output elasticities.

Assume that once new general purpose technologies or new technology sectors are

discovered, they partially crowd out the existing technology sectors by taking away

some of their importance in producing the final good if they are integrated. This

is formalized by a depreciation of the existing output elasticities with rate δα. This

results in a behavior given by αj,τ+1 = (1− δα)αj,τ when new technology sectors are

discovered in period τ + 1 and are integrated. The economic intuition behind this

depreciation scheme is that the importance of technologies declines with their age,

i.e. a technology sector is most important when it is just discovered and becomes

more and more “replaced” by newer technologies created as time passes on. Applying

6If there are fixed costs involved in creating different variants, the creator of the new technology

will naturally set up only one variant.
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this rule to all elasticities, it gives a particular new technology sector an output

elasticity of δα(1−α)/m+ to start with, where m+ is the number of symmetric new

technology sectors. Therefore αn equals δα(1− α)/m+.

As said before, the process of creating a new technology is partially governed by

uncertainty. The firm conducting research in this area is nevertheless able to in-

fluence the probability of success through investing a quasi-fixed cost which does

only depend on the probability of success and the sector size of the new technology

if it were to be integrated, but not on the quantity of units produced. As before

this front up investment also determines the quality level of the intermediate good

in the new technology. After being successful, it depends on the producers of final

goods whether they integrate this new technology in the production process of final

goods. Furthermore the R&D activities of different firms are treated as stochasti-

cally independent. If the owners of these firms are well diversified, it is reasonable to

assume that firms engaged in creating new technologies maximize expected profits

and hence are risk neutral.

The fixed costs, in terms of the final good of the economy, determining the proba-

bility of success and the quality level are given by

Fn = ηe
ν pn

1−pn
+µ λn

λ̄τ−1 αnYI , (14)

and have to be incurred whether or not the innovation process is successful. As can

be seen, these costs increase in the probability of success, pn, the desired quality

level λn and the size of the new sector, αnYI . ν > 0 is an exogenously given

productivity parameter. As before, the argument for including the sector size is the

idea that R&D costs increase with the size of the sector. This part of the R&D

costs is determined conditional on the integration of the new technology sector,

i.e. the sector size that would emerge if the new technology is integrated into the

production technology of final goods. YI denotes final output in the economy if the

new technology sector is integrated. Therefore this term is deterministic for the

developer of the new technology.

If the firm succeeds in creating a new technology it can capture the whole market for

the differentiated input factor for this new technology. The demand for this variant
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is then given by

xn = [γ(r + δ)]−1αnYI ,

since the number of variants in this new sector is restricted to one by assumption.

The demand function has this particular simple representation because a constant

share of final goods production falls on each sector. The share is given by the output

elasticity. The assumptions about the price mark-up over marginal costs are as in

the preceding sections.

Profits for the firm are then given by

πn = Ĩn(γ − 1)(r + δ)xn − Fn,

where Ĩn is a random variable which takes on the value 1 with probability p̃n and

0 with probability 1 − p̃n. p̃n is the probability with which the firm succeeds in

creating a new technology and is selected by final goods producers to be included in

the technology of producing final goods.

The term Ĩn can be split into two separate independent random variables, Ĩn = InIs.

In takes on the value 1 with probability pn if the firm is successful in creating a new

technology and 0 with probability 1 − pn if not. Is takes on the value 1 if this

new technology is selected to be included into the production technology of final

goods. Whether this is the case, clearly depends on the decision of final goods

producers and on the number of competitive new technologies. Since these are the

realizations of independent random variables which are beyond the control of the

firm, the optimization problem of choosing the probability of success and the optimal

quality level can already be solved.

Following these arguments, expected profits can be written as

E[πn] = pnE[Is]
γ − 1

γ
αnY − ηe

ν pn
1−pn

+µλnαnY.

Setting the first derivative of the expected profits equal to zero and assuming that

entry into the market for new technologies takes place until the expected profits are

driven down to zero, gives the optimal probability as

pn = 1 +
ν

2
−
√(

1 +
ν

2

)2
− 1. (15)
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This expression for pn is always larger than zero and smaller than one and character-

izes a maximum. Furthermore since the parameter ν is identical for all firms engaged

in creating new technologies, the chosen probability is identical across firms. This

makes the overall probability of all firms successful in creating a new technology for

being integrated into the final goods production technology symmetric.

Solving the maximization problem with respect to the quality level of the new tech-

nology leads to the result

λn =
1
µ

αn

1− αn
λ̄τ−1, (16)

which quite analogous to the result in (10).

So far, nothing is said about the number of new technology sectors to be integrated

in a particular period of time, m+ ∈ {0, 1, 2, ...}. The decision about integration

has to be made by the producers of final goods. In general, this is a complex

dynamic program, because the decision of how many sectors to integrate in one

period has an influence on all forthcoming periods. A less complex problem can

be established if one is willing to allow for some additional assumptions about the

market environment for final goods. Assume that entry and exit into the market for

final goods is costless and any combination of technology sectors used in the past

by at least one final good producer can be copied at no costs by a competitor. Due

to the first assumption there is perfect competition in the market for final goods.

Because of the second, the only strategy that causes no losses is to maximize the

current total factor productivity by choosing the myopic m+.

The problem is then easiest solved if one first looks on the problem of deciding on

the number of new technologies, given that this number is at least 1. Looking at the

reduced form of the production function in (12) and interpreting M as the number of

established technology sectors, already available in the previous period, the relevant

term of the new total factor productivity is given by

TFPm+>0 =
M∏

j=1

(
N

1−(1−δα)αj

j,+ λ̄
(1−δα)αj

j,+

) m+∏
n=1

(
N1−δα(1−α)/m+

n λδα(1−α)/m+
n

)
,

where Nj,+ is the new degree of horizontal differentiation in established sectors and

λ̄j,+ the new average level of quality in sector j. Both numbers do not depend on m+
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because the development of the quality level depends only on the already existing

sectors. What is depending on m+ is the very right product term which can be

written as

m+∏
n=1

(
N1−δα(1−α)/m+

n λδα(1−α)/m+
n

)
=
(

1
µ

δα(1− α)/m+

1− δα(1− α)/m+
λ̄τ−1

)δα(1−α)

,

since Nn = 1. As can clearly be seen, this expression declines with m+. The reason

for the total factor productivity to decline with the number of new technologies is

the split of δα(1 − α) between the m+ new technologies as the output elasticity.

Due to this, the incentive to invest in quality in the new sector decreases as more

sectors get integrated. For the producers of final goods it is therefore optimal, if

they decide to integrate new technologies, to integrate only one. What still needs

to be determined is whether m+ is zero or one.

The decision between zero or one new technology sectors can be seen as a decision

between growth through quality improvements of existing technologies or growth

through integration of new technologies and combinations between them. To see

the determining factors for this decision, it is helpful to look at the sequence of

output elasticities with and without the new technology sector, A+ and A

A+ = {δα(1− α), δα(1− δα)(1− α), δα(1− δα)2(1− α), ..., (17)

δα(1− δα)M+m+−2(1− α), (1− δα)M+m+−1(1− α)},

A = {δα(1− α), δα(1− δα)(1− α), δα(1− δα)2(1− α), ..., (18)

(1− δα)M−1(1− α)}.

The first M − 1 elements of both sequences are identical, the last element in A is

split into two elements in A+.

One term in the total factor productivity consists of the quality levels in all tech-

nology sectors,
∏

λ̄
αj

j . Denote this term as Q+ in the case of m+ = 1 and Q in the

case of m+ = 0. Then Q+ and Q can be written according to the sequences (17)
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and (18) together with the optimality conditions (10) and (16) as

Q+ =


M+m+−1∏

k=1

[
max

(
1
µ

(1− δα)k−1δα(1− α)
1− (1− δα)k−1δα(1− α)

, 1
)

λ̄τ−1

](1−δα)k−1δα(1−α)
×

×
[
max

(
1
µ

(1− δα)M+m+−1(1− α)
1− (1− δα)M+m+−1(1− α)

, 1
)

λ̄τ−1

](1−δα)M+m+−1(1−α)

,

Q =

{
M−1∏
k=1

[
max

(
1
µ

(1− δα)k−1δα(1− α)
1− (1− δα)k−1δα(1− α)

, 1
)

λ̄τ−1

](1−δα)k−1δα(1−α)
}
×

×
[
max

(
1
µ

(1− δα)(1− α)M−1

1− (1− δα)(1− α)
, 1
)

λ̄τ−1

](1−δα)M−1(1−α)

.

If there is a significant number of existing technology sectors M , it is reasonable

to look at the case where, through ongoing depreciation of the output elasticities

αj , the growth factors in the last two terms in Q+ and in the last term in Q,

representing the oldest technologies, equal one. In this case, however, it holds that

Q+ = Q and hence there is no change in total factor productivity if m+ is zero or

one. With respect to this part of the total factor productivity final good producers

are indifferent between integrating a new technology sector or not. Quality growth

does not influence the decision regarding the integration of new technologies.

But there is another part of total factor productivity with is to be considered, i.e.

the term reflecting the horizontal degree of differentiation of the technology sectors,∏
N

1−αj

j . Remember from the result (11) that in established technology sectors

this degree is given by γ−1
γ

1

ηeµλj/λ̄τ−1
. As technology sectors get older, the incentive

to invest in quality decreases and from some point λj = λ̄τ−1 holds so that these

sectors reach their maximum degree of differentiation of magnitude γ−1
γ

1
ηeµ . If a

new technology sector is integrated, i.e. m+ = 1, its initial degree of differentiation

is Nn = 1 as pointed out above. Therefore the term representing the degree of

differentiation in total factor productivity, denoted by N+ in the case m+ = 1 and
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N in the case of m+ = 0, can be written as

N+ = 11−δα(1−α) ×

×
M−1∏
k=1

min

γ − 1
γ

1

ηe
δα(1−δα)k(1−α)

1−δα(1−δα)k(1−α)

,
γ − 1

γ

1
ηeµ

1−δα(1−δα)k(1−α)
×

×min

γ − 1
γ

1

ηe
(1−δα)

M+m+−1
(1−α)

1−(1−δα)
M+m+−1

(1−α)

,
γ − 1

γ

1
ηeµ


1−(1−δα)M+m+−1(1−α)

,

N =

(
γ − 1

γ

1

ηe
δα(1−α)

1−δα(1−α)

)1−δα(1−α)

×

×
M−2∏
k=1

min

γ − 1
γ

1

ηe
δα(1−δα)k(1−α)

1−δα(1−δα)k(1−α)

,
γ − 1

γ

1
ηeµ

1−δα(1−δα)k(1−α)
×

×min

γ − 1
γ

1

ηe
(1−δα)M−1(1−α)

1−(1−δα)M−1(1−α)

,
γ − 1

γ

1
ηeµ

1−(1−δα)M−1(1−α)

As noted above the sequences of output elasticities are identical from the beginning

on with the difference in the last terms, the last to elements in A+ sum up to the last

element in A. Denote the sector which is just below its maximum degree of differen-

tiation as sector with number m̄, where sectors are ordered with increasing age. m̄

is then also the m̄th element in A+ and A. The sum of the remaining elasticities in

A+ and A is identical although the number of the remaining elasticities is different.

Therefore
∏M+m+

k=m̄+1 N1−αk
k with αk ∈ A+ is equal to

(
1
µ

γ−1
γ

1
ηeµ

)∏M
k=m̄+1 N1−αk

k with

αk ∈ A. Therefore, dividing N+ through N gives the result

N+

N
=
(

γ − 1
γ

1
η

)δα(1−α)

eδα(1−α)−µ. (19)

With the condition 1
µ

δα(1−α)
1−δα(1−α) > 1, i.e. at least the newest technology sector finds it

profitable to rise its quality level above the quality index of the preceding period, it

can easily be shown that the term above is larger than 1. The reason for this result

is that as a new technology sector is integrated, an old one reaches is full degree

of horizontal differentiation due to lower fixed costs through lower investments in

quality. At the the same time the new technology has a degree of differentiation of
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1. Therefore it is, from the myopic point of view of the producers of final goods,

necessary to integrate one new technology sector, if it is available7.

Next, turn to the issue of availability of a new technology sector for integration into

the production technology for final goods. This issue is closely related to the prop-

erties of the indicator variable Ĩn = InIs, where In is one if the representative firm

engaging in creation of a new technology is successful and Is is one if this particular

technology is selected by final good producers. The properties of In have already

been determined, i.e. it takes on the value 1 with probability pn, given by equation

(15), and 0 with probability 1 − pn. Is depends on the competitive environment

of the representative firm. It is certainly 1 if no other firm was successful in cre-

ating a competitive new technology. It is assumed that it takes on the value 1
2 if

an additional firm was successful, 1
3 if two additional firms were successful and so

forth. Thus it is assumed that if more than one new technology is available, all new

technologies have the same probability of being selected by final good producers. If

a new technology is not selected in one period it has no second chance, i.e. it can

not be integrated in the following periods. Economically this can be justified by

the argument that a newly created technology is based on the state of the art of

technology. If the technology changes, e.g. through integration of another new tech-

nology, the not selected technologies created in the past are not longer compatible.

Another interpretation that would lead to the same result could be that to achieve

compatibility again, additional R&D costs have to be incurred which are again given

by (14).

Since all firms engaged in creating new technologies set the same probability of

success given by (15) and research projects are assumed to be stochastically inde-

7Using the expression λj,ixj,i instead of
λj,ixj,i

αj
in the production function (5) would imply an

additional term in
N+
N

which would be smaller than and asymptotical equal to 1. This is becauseQ
α

αj

j then appears as an additional multiplicative term in TFP given by (13). However, this

term converges under the assumption of constant depreciation from above to [δα(1 − α)]1−α(1 −

δα)(1−δα)(1−α)/δα as M increases. Therefore asymptotically nothing changes, however, for small M

the right hand side of (19) has to be sufficiently larger than 1 in order to compensate for the loss

in
Q

α
αj

j .
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pendent, the probabilities of being selected have a binomial distribution. Denote be

Ñ the number of firms engaging in creation of new technologies, the expected value

of Is is given by

E[Is] =
Ñ−1∑
h=0

1
1 + h

P (x = h), (20)

where P (x = h) is the probability that h of the remaining Ñ − 1 developers of

technology sectors are successful in creating a new one. Since the probabilities have

a binomial distribution, P (x = h) is given by

P (x = h) =

 Ñ − 1

h

 ph
n(1− pn)Ñ−1−h =

(Ñ − 1)!
h!(Ñ − 1− h)!

ph
n(1− pn)Ñ−1−h.

The expected value in equation (20) can alternatively be written as

E(Is) =
Ñ−1∑
h=0

1
pn

1
Ñ

Ñ !
(h + 1)!(Ñ − 1− h)!

ph+1
n (1− pn)Ñ−1−h =

=
1
pn

1
Ñ

(1− p0),

where p0 is the probability that no new technology sector is created, i.e. p0 =

(1−pn)Ñ . With this result, the expected value of the net profits for a representative

Firm engaged in creating a new technology are given by

E(πn) =
1
Ñ

[
1− (1− pn)Ñ

] γ − 1
γ

αnY − ηe
ν pn

1−pn
+µλnαnY, (21)

where pn is given by equation (15) and λn by (16). Assuming entry into the market

for new technologies until net profits are driven down to zero results in the following

condition

Ñ

1− (1− pn)Ñ
=

γ − 1
γ

1

ηe
ν pn

1−pn
+µλn

, (22)

which determines the number of competitive research firms Ñ engaged in creating

new technologies. As before pn and λn are determined by equations (15) and (16).

The left hand side of equation (22) is strictly increasing in Ñ which can be seen

as 1−(1−pn)Ñ

Ñ
− 1−(1−pn)Ñ−1

Ñ−1
= p0+p1−1

Ñ(Ñ−1)
< 0, where p0 and p1 are the probabilities
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of a successful creation of exactly 0 and 1 new technologies economy wide. Thus,

expected net profits in equation (21) are decreasing in Ñ , as long as Ñ is larger

than one. If Ñ is growing large, the term (1 − pn)Ñ converges to zero and Ñ is

approximately given by

Ñ ≈ γ − 1
γ

1

ηe
ν pn

1−pn
+µλn

,

which is quite analogous to the degree of horizontal differentiation in older technolo-

gies, but here it applies to competitors. This approximation is just for illustration

purposes and will not be used in the following.

3.5 Growth of Total Factor Productivity

So far it has been shown that, if at least one new technology sector has been cre-

ated, one new technology will be integrated into the production technology for final

goods. However, the creation of new technologies is governed by uncertainty and it

is possible that in a particular period of time no new technology is ready for inte-

gration. This happens with probability p0 = (1− pn)Ñ . The probability that a new

technology is integrated is thus 1− p0.

First, turn to the growth rate in production of final goods if no new technology

sector is integrated. If this happens to be the case, then growth still takes place in

this special case of constant depreciation of the output elasticities through at most

two channels. First, growth in the level of quality of intermediate input factors

takes place. This applies only to the sectors which qualify for a growth factor larger

than one according to the condition in (10). Second, if in the preceding period

of time one new technology sector has been integrated, its degree of horizontal

differentiation jumps from 1 to the value given in (11), which gives the diversification

for an established technology sector. Thus, there are two cases to be considered.

In the pure quality growth case the growth factor for total factor productivity is

determined by the growth factor γλ̄ of the quality index λ̄

γTFP,1 = γ1−α
λ̄

=
m̄∏

s=1

(
1
µ

(1− δα)s−1δα(1− α)
1− (1− δα)s−1δα(1− α)

) (1−α)
m̄

, (23)
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where m̄ again denotes the m̄th technology sector for which it still pays to invest

in quality to rise it above the index of the preceding period. The expression for

γλ̄ follows from the definition (7) and the optimality condition (10). The growth

factor γTFP,1 is realized with an unconditional probability of p2
0, i.e. two consecutive

periods with no integration of a new technology.

In the case where in the preceding period a new technology sector has been inte-

grated, there is an additional source of growth through horizontal differentiation of

this sector. This degree of diversification is given by equation (11) and leads to a

growth factor of

γTFP,2 =

(
γ − 1

γ

1

ηe
δα(1−α)

1−δα(1−α)

)1−δα(1−α)

γTFP,1. (24)

Therefore the growth factor of total factor productivity in this case is strictly larger

than in the case where no new technology has been integrated in the previous period.

This growth factor turns up with unconditional probability (1− p0)p0.

Next, turn to the second general case where a new technology sector is integrated

into the production technology for final goods. Again, two sub cases have to be

considered, the first considers no integration of a new technology in the preceding

period of time and the second where also in the preceding period a new technology

has been integrated. In the first sub case, growth takes places through quality growth

in the intermediate input factors of the newest m̄ technologies. Also contributing to

growth is the fact of an additional technology sector reaching its maximum degree

of horizontal differentiation. Growth is negatively affected by the differentiation of

1 of the new technology sector. With the results of the previous section the growth

factor for this case can be written as

γTFP,3 =
(

γ − 1
γ

1
η

)δα(1−α)

eδα(1−α)−µγTFP,1. (25)

Again, the quality component of growth is identical by its construction. The uncon-

ditional probability of this case is p0(1− p0).

The second sub-case is the scenario of integration of new technologies in two subse-

quent periods of time. As before the behavior of quality growth is not affected and
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is given by γTFP,1. The second source of growth is the full horizontal differentiation

of an additional technology sector as in the first sub case. But the negative effect

of the first sub case is now missing, since a new technology sector with horizontal

degree of differentiation of 1 is present in both time periods. The growth factor is

therefore given by

γTFP,4 =
(

γ − 1
γ

1
ηeµ

)
γTFP,1, (26)

which is realized with an unconditional probability (1 − p0)2. Following the argu-

ments put forward so far, the growth factors can be ordered as followed

γTFP,4 > γTFP,3,

γTFP,2 > γTFP,1,

γTFP,3 > γTFP,1.

Whether γTFP,3 is larger or smaller than γTFP,2 essentially depends on the values of

the parameters of the model. This can be seen as γTFP,3

γTFP,2
= e−µ

(
γ−1

γ
1
µ

)2δα(1−α)−1
.

Note that the decision between integrating a new technology sector or not, as dis-

cussed in the previous section, is not based on these figures. The reason for this is

that the comparative scenario is not the previous period but the relevant scenario

of the current period, i.e. what would happen if the new technology sector were not

to be integrated.

Summarizing the above cases, which correspond to the subscripts of the growth

factors and will be used in the following, gives the four possibilities

1. No integration of a new technology sector in period τ and τ + 1,

2. Integration of a new technology sector in period τ , but not in τ + 1,

3. No integration of a new technology sector in period τ , but in τ + 1,

4. Integration of a new technology sector in period τ and τ + 1.

Since the event of integration of a new technology sector is a random event, the

sequence of TFP growth factors is a random variable. However, with the results so
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far some light on the expected behavior of this growth factor can be shaded. The

probability of non availability of new technology sector in one period of time is given

by p0 = (1− pi)Ñ . The time interval ti until the creation of a new technology sector

and its integration into the production technology for final goods has therefore an

expected value of

E[ti] = 1(1− p0) + 2p0(1− p0) + 3p2
0(1− p0) + 4p3

0(1− p0) + ... =
1

1− p0
.

Therefore, on average, every 1
1−p0

periods one new technology sector is integrated

into the production technology for final goods. The growth factor of TFP follows on

average for 1
1−p0

−1 periods γTFP,1, then for one period γTFP,3 and for an additional

period γTFP,2 before returning to γTFP,1.

Indeed, the random variable which gives the state of the world in period τ and

defines which of the four growth rates of TFP realizes follows a homogenous first

order Markov chain with transition matrix

P =


p0 0 1− p0 0

p0 0 1− p0 0

0 p0 0 1− p0

0 p0 0 1− p0

 , (27)

where the element pn,m in row n and column m denotes the probability to move from

state n to state m. The states are defined in correspondence with the numbering

of the growth factors of total factor productivity above. The eigenvalues of this

transition matrix are 1,0,0,0, hence the process is also ergodic (see e.g. Hamilton

(1994) chap. 22).

Due to its structure, this Markov chain converges after two periods of time to the

stationary solution [p2
0, p0(1−p0), p0(1−p0), (1−p0)2]′ which gives the unconditional

probabilities of the four states of the economy.

3.6 Growth in Production

The preceding subsection dealt with the behavior of total factor productivity over

time. To draw conclusions about the behavior of final good production, the behavior
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of the capital stock of the economy has to be considered as well. Due to the log

preferences of consumers, the capital stock in τ + 1 does not depend on rτ+1 but

only on wages in τ , i.e.

Kτ+1 =
1

2 + ρ
αYτ =

1
2 + ρ

αTFPτL
αK1−α

τ .

Using this equation iteratively gives Kτ+1 as

Kτ+1 =
∞∏

s=0

(
1

2 + ρ

)(1−α)s

α(1−α)s
TFP

(1−α)s

τ−s Lα(1−α)s
.

With this result, final goods production can be written as

Yτ+1 = TFPτ+1L
α
∞∏

s=1

(
1

2 + ρ

)(1−α)s

α(1−α)s
TFP

(1−α)s

τ+1−s Lα(1−α)s
.

The growth factor of final goods production γY,τ+1 = Yτ+1

Y τ is therefore

γY,τ+1 =
∞∏

s=0

(
TFPτ+1−s

TFPτ−s

)(1−α)s

=
∞∏

s=0

γ
(1−α)s

TFP,τ+1−s.

where γTFP,τ is the growth factor of total factor productivity which can take on

the values γTFP,1, γTFP,2, γTFP,3 or γTFP,4 as defined in the preceding section. The

continuously compounded growth rate of final goods production gY,τ+1 = ln γτ+1

then follows the process

gY,τ+1 = gTFP,τ+1 +(1−α)gTFP,τ +(1−α)2gTFP,τ−1 +(1−α)3gTFP,τ−2 + ..., (28)

where gTFP,τ = ln γTFP,τ . Remember from the preceding section on the growth

behavior of total factor productivity that γTFP,τ is a random variable which can po-

tentially take on four different values with corresponding unconditional probabilities,

i.e.

gTFP,τ =



ln γTFP,1 with probability p2
0,

ln γTFP,2 with probability p0(1− p0),

ln γTFP,3 with probability p0(1− p0),

ln γTFP,4 with probability (1− p0)2.

Therefore equation (28) defines a moving average process of order infinity with

geometrical declining coefficients. From the duality of autoregressive and moving
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average processes, the growth rate of final goods production has an autoregressive

representation of order one given by

gY,τ = (1− α)gY,τ−1 + gTFP,τ .

Note that the gTFP,τ are not distributed independently because their possible real-

izations depend on whether in τ−1 a new technology has been created and integrated

or not. They follow the Markov chain given in the preceding section. Thus their are

additional dynamics present compared to a usual AR(1) process.

The reason for this result is first, the dependence of the capital stock on last pe-

riods savings, second, the independence of saving from the interest rate due to log

preferences and third, the randomized occurrence of new technology sectors for the

production technology of final goods which gives rise to shocks in the total factor

productivity.

The result for the behavior of output growth crucially depends on the preferences

of consumers. To illustrate this, assume that utility is not given by log preferences,

but by linear preferences

Uτ = Eτ

(
cτ +

1
1 + ρ

cτ+1

)
.

The optimality condition for the households is then

Eτ (rτ+1) = ρ.

Since expectations are built on information available in period τ , there are two cases

to be considered.

If there is no integration of a new technology sector in period τ , then it follows that

ρ + δ = Eτ (rt+1) + δ = (1− α)
(

L

K1,τ+1

)α

(p0γTFP,1 + (1− p0)γTFP,3)TFPτ ,

where TFPτ is total factor productivity in period τ and K1,τ+1 is the capital stock

built up through saving in period τ conditional on this case.

If a new technology sector has been integrated in period τ , then

ρ + δ = E(τ)(rt+1) + δ = (1−α)
(

L

K2,τ+1

)α

(p0γTFP,2 + (1− p0)γTFP,4)TFPτ
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Thus, there a two possible states for the capital stock, K1,τ+1 and K2,τ+1 in period

τ + 1, depending on what happens in period τ

K1,τ+1 = (ρ + δ)−
1
α (1− α)

1
α (p0γTFP,1 + (1− p0)γTFP,3)

1
α TFP

1
α

τ L,

K2,τ+1 = (ρ + δ)−
1
α (1− α)

1
α (p0γTFP,2 + (1− p0)γTFP,4)

1
α TFP

1
α

τ L.

For the growth factor of final goods production it follows that it can take on four

possible values as the growth factor of total factor productivity. If in period τ no

new technology sector has not been integrated, K1,τ+1 is relevant and output is given

either by

Y1,τ+1 = (ρ + δ)−
1−α

α (1− α)
1−α

α (p0γTFP,1 + (1− p0)γTFP,3)
1−α

α γTFP,1TFP
1
α

τ ,

or

Y3,τ+1 = (ρ + δ)−
1−α

α (1− α)
1−α

α (p0γTFP,1 + (1− p0)γTFP,3)
1−α

α γTFP,3TFP
1
α

τ ,

depending on whether no or one new technology is integrated in period τ + 1.

For the other two cases where K2,τ+1 is relevant, the corresponding figures for final

output are given by

Y2,τ+1 = (ρ + δ)−
1−α

α (1− α)
1−α

α (p0γTFP,2 + (1− p0)γTFP,4)
1−α

α γTFP,2TFP
1
α

τ ,

Y4,τ+1 = (ρ + δ)−
1−α

α (1− α)
1−α

α (p0γTFP,2 + (1− p0)γTFP,4)
1−α

α γTFP,4TFP
1
α

τ ,

The four growth factors for final output production can be written as

γY,1,τ+1 = (p0γTFP,1 + (1− p0)γTFP,3)
1−α

α γTFP,1

(
rτ + δ

ρ + δ

) 1−α
α

,

γY,3,τ+1 = (p0γTFP,1 + (1− p0)γTFP,3)
1−α

α γTFP,3

(
rτ + δ

ρ + δ

) 1−α
α

,

γY,2,τ+1 = (p0γTFP,2 + (1− p0)γTFP,4)
1−α

α γTFP,2

(
rτ + δ

ρ + δ

) 1−α
α

,

γY,4,τ+1 = (p0γTFP,2 + (1− p0)γTFP,4)
1−α

α γTFP,4

(
rτ + δ

ρ + δ

) 1−α
α

.

With the corresponding results for the two possible states of the capital stock in

period τ , K1,τ and K2,τ , given above, there are two possible general states for the
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interest rate

r1,τ =
TFPτ

TFPτ−1

1
p0γTFP,1 + (1− p0)γTFP,3

(ρ + δ)− δ,

r2,τ =
TFPτ

TFPτ−1

1
p0γTFP,2 + (1− p0)γTFP,4

(ρ + δ)− δ,

where r1,τ realizes if in period τ − 1 no new technology sector has been integrated

and r2,τ otherwise. TFPτ
TFPτ−1

is therefore given by either γTFP,1 or γTFP,3 in the case of

r1,τ or by γTFP,2 and γTFP,4 in the case of r2,τ depending on what happens in period

τ . We therefore end up with four possible values for the net interest rate which are

time invariant and only the realization in period τ is relevant for the growth factor

of output. Which growth factor emerges can be seen by the concordance below

γY,1,τ+1 ⇔ rτ = γTFP,1

p0γTFP,1+(1−p0)γTFP,3
(ρ + δ)− δ,

γY,3,τ+1 ⇔ rτ = γTFP,3

p0γTFP,1+(1−p0)γTFP,3
(ρ + δ)− δ,

γY,2,τ+1 ⇔ rτ = γTFP,2

p0γTFP,2+(1−p0)γTFP,2
(ρ + δ)− δ,

γY,4,τ+1 ⇔ rτ = γTFP,4

p0γTFP,2+(1−p0)γTFP,2
(ρ + δ)− δ,

(29)

In every period there are four different states for the growth factor of final output

which are time invariant. Which one realizes is of course depending on the past

integration policy of new technologies by final output producers. The behavior of

this growth factor can be described by a first order homogenous and ergodic Markov

chain with the same transition matrix (27) as given in the section on growth in total

factor productivity.

The crucial difference, compared to the case of log preferences, is that there are

now less dynamics in the process for the growth factor of final goods production. In

particular the autoregressive structure is now missing. The reason for this is that

in the case of log preferences, households try to smooth the consumption path since

they have a finite elasticity of intertemporal substitution. In the case of linear pref-

erences, this argument is missing because the intertemporal elasticity of substitution

is infinity and there is no gain in utility from consumption smoothing.
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4 Conclusion

The aim of the paper was to develop a growth model that takes account of several

aspects which seem to be partially less recognized in the modern growth theory.

First, new combinations of production factors should work as one engine of growth

in the model. This reflects modern as well as older arguments in the growth debate.

Second, one aim was also to show that growth can take place in the presence of

“fishing out” effects in the traditional dimensions of growth and how a “standing on

shoulders of giants” effect can be modelled in a less ad hoc and more endogenous

way. New combinations of new technologies with existing ones is a partially way

out of this problem as well as the possibility that new technologies with high growth

potential can compensate for old technologies with low growth potential.

The model developed above belongs to the class of endogenous growth models. This

can be seen by introducing an additional policy parameter into the model which

might be interpreted as a proportionate R&D subsidy financed by a lump sum tax.

Imagine that only a fraction 1 − β of the fixed costs in the cost functions (6) have

to be incurred by the innovating firms. This directly influences the growth factor of

total factor productivity which is then given by

γTFP,1 =
m̄∏

s=1

(
1
µ

(1− δα)s−1δα(1− α)
1− (1− δα)s−1δα(1− α)

)(1−δα)s−1δα(1−α)

,

γTFP,2 =

γ − 1
γ

1

(1− β)ηe
δα(1−α)

1−δα(1−α)

1−δα(1−α)

γTFP,1,

γTFP,3 =
(

γ − 1
γ

1
(1− β)η

)δα(1−α)

eδα(1−α)−µγTFP,1,

γTFP,4 =
(

γ − 1
γ

1
(1− β)ηeµ

)
γTFP,1.

With such a subsidy policy the growth behavior of the economy can be influenced

directly. Besides the influence on the above growth factors, there is an additional

level effect on final output production. If the subsidy policy is introduced, fixed

costs for all established technology sectors falls. This leads to a one time rise in the

number of intermediate input factor producers, shifting up production.
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The frequency of occurrence of new technology sectors can be influenced by an

analogous subsidy of R&D costs of firms engaged in creating new technologies. This

subsidy does not influence the degree of horizontal differentiation as this is always

equal to one, but more firms will compete in creating new technologies due to lower

fixed costs. This rises the probability that at least one new technology is created

in each period and hence reduces the average time interval between the creation of

two new technologies.

As has been shown, the model develops dynamics in both the growth rate of fac-

tor productivity and final output. The dynamics with respect to total factor pro-

ductivity are totally determined by the production side of the economy, whereas

the dynamics of final output growth are also influenced by consumer preferences.

In particular, if we have log preferences and AR(1)-process with non independent

shocks emerges for this growth rate.

A task that is left for future research is the determination of the optimal growth

rate in the economy. There are several externalities in the model above which are

neglected by the market participants. Therefore it is very likely that the resulting

growth rate is not optimal. First, firms producing intermediate input factors neglect

their influence on the average quality level. Not doing so would give an additional

incentive to invest in the quality level. Second, final output producers are not

able to maximize total factor productivity in the long run because of the market

environment. Third, creators of new technology sectors capture the gains from this

innovation only for one period and leave their knowledge as a public good for future

periods. Finally, monopoly power plays an important role in forming incentives for

innovative behavior and by the same time lets prices to deviate from marginal costs.

Taking account of these facts in the model would give the long run optimal growth

rate.

The short run behavior of agents in the above model is clearly a point that can

be criticized and there might be market environments in the real world where the

underlying assumptions are not fulfilled. Also criticized can be the assumption of a

constant depreciation rate of output elasticities which was used to solve the model.
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This assumption should give a picture of a world where the newest technologies are

the ones which are most important. As technologies get older they are more and

more replaced in the production technology by newer ones. Clearly there might be

different environments where this idea does not hold. But this work is left for future

research.
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