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Abstract

This paper introduces competitive markets in the Grossman-
Helpman [1991, ch. 3] increasing variety growth model. In this
standard model of endogenous growth theory, competition has a
negative incentive effect. Accordingly, a larger resource base is
required to sustain long run growth. In an intermediate range,
however, there is path dependence. In this case, too much initial
competition may ultimately stall the growth process. Moreover, by
introducing asymmetry in market-power, competition gives rise to
static welfare losses. In economies with a small positive growth rate,
welfare losses due to varying mark-up factors may be large enough to
offset the benefits of growth.
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1 Introduction

This paper introduces competitive markets in the Grossman-Helpman
[1991, ch. 3] increasing variety growth model. In this standard model of
endogenous growth theory, the prospect of earning future rents is the crucial
incentive for innovation. If the notion of competition is such that it implies
lower mark-up factors, an increase in the degree of competition will reduce
the equilibrium growth rate by lowering the incentive to innovate. We show
that for a given process of knowledge diffusion, long-run positive growth can
be sustained as long as the resource base in the economy is sufficiently high.
If the economy is endowed with an ”intermediate” resource base however,
it may find itself stuck in a no-growth trap depending on the initial degree
of competition. If so, too much initial competition will ultimately stall
the growth process. Thus, we make the case for less endowed economies
to take their time when it comes to engage in ambitious competition policies.

Besides lowering the incentives to innovate, allowing for product market
competition also introduces asymmetry. As different sectors typically face
different degrees of competition, mark-up factors throughout the economy
will differ. Accordingly, competition removes the somewhat artificial absence
of static welfare losses in the standard model. Due to the coexistence of
markets with different degrees of competition, relative prices do no longer
adequately reflect marginal cost. Thus, household decisions are biased and
labor is no longer allocated efficiently. We demonstrate that the associated
loss in aggregate welfare can be large enough to offset the dynamic gains
resulting from a small but positive growth rate. Thus, the asymmetry
introduced by competition primarily adds the often claimed trade-off
between static welfare losses and dynamic gains to the standard model.

The Grossman-Helpman model is swiftly described as follows. Economic
growth is captured by an increasing number of varieties. The engine of
growth is intentional innovation. R&D is fueled by the chances of extracting
future rents from imperfectly competitive product markets. Labor is the
only resource and can either be used in production or in R&D. Resources
allocated in production increase the quantity of existing varieties while
resources in R&D increase the knowledge of how to build new varieties.
As new products become introduced to the economy, the incentives to
innovate diminish just as the present value of future profits decreases
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with an increasing number of existing varieties (horizontal competition).
Accordingly, it takes an opposed force to sustain long-run growth. This force
is found in knowledge spill-overs. It is assumed that with any newly invented
blueprint, there comes along an increase in knowledge capital easing future
research. The net impact of knowledge spill-overs and diminishing returns
finally determines the scale of long-run growth.

Originally, the blueprints for new varieties are assumed to be protected by
infinitely lasting patents. Thus, profit maximizing firms are monopolies and
perpetually charge a constant mark up over marginal cost. In what follows,
we allow for competition in existing varieties (vertical competition). Vertical
competition has previously been considered by Barro and Sala-i-Martin
[1995], Walz [1995] and Arnold [1995] who analyze the impact of product
imitation. More recently, competition by means of overlapping varieties
originating from a countries opening up to trade have been considered by
Tang and Wälde [2001] and Impullitti [2006]. Also, Gancia and Zilibotti
[2006] spend a section of their chapter on horizontal innovation in the
handbook of economic growth on the erosion of monopoly power in the
variety type growth model. We extend the existing analysis along three
lines. Firstly, presenting a global solution, we are able to consider stability
issues and reveal the possibility of a growth trap. This secondly allows us
to confirm the danger of a no-growth trap found by Tang and Wälde for the
complete-overlap-open-economy in a closed economy. Thirdly, by explicitly
accounting for static welfare losses due to unequal mark-ups we explore the
possibility that a small but positive growth rate may be welfare inferior to
zero growth. Far from suggesting actual policies, we point out that from
a social planers view, small resource base economies may actually find it
worthwhile not to engage in growth enhancing policies. Throughout the
paper we stick to the growth mechanics of the variety model and thereby
put up its weaknesses like e.g. the predicted strong scale effects (Jones
[2004]) or the absence of escape-competition effects (Aghion, Harris and
Howitt [2001]). In addition, our exclusive focus on the rent decreasing effect
of competition puts aside, e.g. improvements of knowledge spillovers due
to international trade or productivity effects of imitation (Arnold [1995])
which potentially qualify our results.

The rest of the paper is structured as follows. Section 2 introduces the
baseline model. After clarifying our notion of competition (section 3), we
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present the imitation model in section 4. An analysis of different endowed
economies is considered in the following subsections. The deregulation model
is derived as a special case of the imitation model in section 5. Subsequently,
we explore the micro perspective and show that the gains from a small pos-
itive growth rate may be offset by welfare losses due to market power. The
final section draws some conclusions.

2 Baseline model

Households

There is a continuum of mass 1 of identical households and each is assumed to
inelastically supply L units of labor. Their preferences exhibit an intertem-
poral elasticity of substitution equal to 1 and satisfy1

U(c) =

∫ ∞

0

e−ρt ln c dt, c = xσy1−σ. (1)

Consumption c consists of two goods x and y and instantaneous utility is
discounted to time 0 using the subjective rate of time preference, ρ. For ease
of interpretation, in this one resource economy, x and y may be regarded as
representing capital intensive and less intensive goods, respectively.

Following Grossman and Helpman [1991], we take advantage of the fact
that the associated indirect utility function only depends upon total con-
sumption expenditures, E, and thus consider the problem of optimal con-
sumption in two separate decisions. That is, we firstly derive the optimal
intertemporal path of total consumption and consider the division of con-
sumption expenditures onto both final goods afterwards.

Denote by B−1 consumers’ stock of bonds. Maximizing intertemporal
utility then requires maximizing the current value Hamiltonian

H ≡ ln c+ λH(rB−1 + wL− E) (2)

subject to expenditures and baring of securities. The first order conditions,
which by the strict concavity of the Hamiltonian are sufficient to maximize

1For notational convenience, the derivative of any variable x with respect to time is
represented by ẋ and x̂ denotes its proportional rate of change. Also, time arguments are
suppressed whenever this causes no confusion.
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discounted utility (see Mangasarian [1966]), read

E = λ−1
H (3)

λ̂H = ρ− r. (4)

Given total expenditures on consumption, the optimal division is obtained
by maximizing the Lagrangian

L ≡ σ lnx+ (1− σ) ln y + λL [E − pxcx − pyy] (5)

with respect to x, y and λL. Due to the Cobb-Douglas specification in (1),
the first order conditions, which again are sufficient for a maximum, state
that throughout time a constant share of expenditures is devoted to both
goods.

pxx = λLσ (6)

pyy = λL(1− σ) (7)

E = pxx+ pyy. (8)

Using total expenditures E as numéraire, (3) requires constancy of λH such
that, by (4), individuals rate of time preference has to equal the interest
rate, ρ = r(t). Moreover, by (6), (7) and (8), Ey ≡ pyy = 1 − σ and
Ex ≡ pxx = σ. However, although helpful from a technical point of view,
normalizing expenditures to 1 in an economy of constant returns to scale
in manufacturing implies a constant nominal GDP and accordingly, with an
increasing number of blueprints, decreasing profits in the intermediate sector
as well as constant wages.

Technology

Following Ethier [1982], we assume that x is produced competitively out of
an increasing variety of intermediates j, each involved with quantity x(j),
according to a Dixit and Stiglitz [1977] specification:

cx =

[∫ n

0

x(j)αdj

] 1
α

, α ∈ (0, 1) (9)

Intermediate demand is chosen as to maximize profits and hence has to equal
the marginal rate of substitution and the ratio of input prices for every com-
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bination of two intermediates j and j′ (where ε ≡ 1/(1− α)):[
x(j)

x(j′)

]α−1

=
p(j)

p(j′)

x(j) =

[
p(j′)

p(j)

]ε
x(j′). (10)

Using (10) to substitute for p(j′)x(j′) in Ex =
∫ n

0
p(j′)x(j′)dj′ = σ yields the

demand for each variety x(j):∫ n

0

p(j)ε

p(j′)ε−1
x(j)dj′ = σ

x(j)p(j)ε
∫ n

0

p(j′)1−εdj′ = σ

x(j) =
p(j)−ε∫ n

0
p(j′)1−εdj′

σ. (11)

The demand for brand j has a constant elasticity of ε (> 1), i.e. more
interchangeable intermediates (a c.p. increase in α) result in a more elastic
demand.

Note that by (9) and (11), px is linear in each p(j):

cx =

[∫ n

0

(
p(j)−εσ∫ n

0
p(j′)1−εdj′

)α

dj

] 1
α

=

[∫ n

0
p(j)1−εdj

] 1
α∫ n

0
p(j′)1−εdj′

σ

= σ

[∫ n

0

p(j)1−εdj

] 1
ε−1

. (12)

Since pxcx = σ, we have px =
[∫ n

0
p(j)1−εdj

] 1
1−ε . Accordingly, any mark-

up pricing in the intermediate sector, weighted by some factor of equal
mark-ups, directly shifts to the final sector and causes distortions once the
mark-up factors in px and py differ.

For an intermediate brand to be producible, the research sector must
come up with the according blueprint in the first place. In performing R&D,

6



researchers ”stand on the shoulders of giants” and rely on public knowledge
from previous research. We adopt the Romer [1990] specification for the
R&D technology with knowledge spillovers and set knowledge capital equal
to the number of existing varieties, n:

ṅ =
nLR
a
, a > 0 (13)

Since ρ is assumed to be positive, the present value of utility in (1) is finite.
Labeling n̂ ≡ g, there are LR = ag workers employed in the research

sector. We assume further that labor has an input coefficient equal to 1
in the production of intermediates, x(j) = Lx(j), Lx ≡

∫ n

0
Lx(j)dj. The y

producers simply employ Ly workers, each of whom is assumed to produce
one unit of output without using further inputs.

Erosion of market power

Initially, newly invented varieties will always be supplied by a monopolist.
The notion of competition is to erode the market power of incumbents. For
ease of exposition, we concentrate on the two polar cases of mark-up factors.
Competition occurs by means of perfect substitutes introduced to the econ-
omy. In this case, we assume that firms compete in prices and thus face zero
profits.

Firms enjoying monopoly power will maximize operating profits against
the static demand given by (11), i.e. set x′(p) = x(p)/(w − p). Solving for
the monopoly price yields

pm =
w

α
. (14)

With constant returns to scale, zero profits in competitive markets are
maintained by charging a price equal to average operating cost:

pc = w (15)

In what follows, n and θ denote the number of competitive intermediate
markets and the accordant share, respectively.
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3 Introducing competition

We consider the introduction of perfect substitutes due to imitation
(Arnold [1995]) and industrial policy. A main difference between the two
is that in a setting with continued imitation, firms anticipate the threat of
loosing monopoly power while the industrial policy framework is taken as
given, at least to the extent that there is no anticipation of shocks when
firms invest in new products. Transforming monopolistic into perfectly
competitive markets finally leads to a closed economy paradigm of a
situation in which a country opens up to international trade and suddenly
faces perfect substitutes in some sectors (Tang and Wälde [2001]). The
model presented here may also shed some light on why large scale privati-
zation may have ambiguous effects on economic growth in different countries.

Imitation

With ongoing imitation, monopoly profits accrue in every period until a
perfect substitute is released. This arrival rate is exogenous, i.e. we deny
purposive imitation to be a strategic choice for the firms. The imitation
technology is assumed to imply

ṅ = ψ(n− n) (16)

where ψdt is the imitation probability. Monopolists capture the threat
of loosing their market power by adding ψ to the discount rate in every
moment in time. Albeit intuitive, this can be shown as follows. Denote by
Ψ(t, τ+∆) the probability that no imitation occurs in a time span (t, τ+∆).
Exogenously given imitation implies the lack of memory, i.e. Ψ(t, τ + ∆) =
Ψ(t, τ)Ψ(τ, τ + ∆). By definition, the latter factor equals 1− ψ∆, with ∆ a
short period of time. Thus,

lim
∆→0

Ψ(τ, τ + ∆)−Ψ(t, τ)

∆
=
dΨ(t, τ)

dτ
= −Ψ(t, τ)ψ

The solution to this variable coefficient first order differential equation
yields the probability of still earning monopoly rents τ periods after t.
Recognizing Ψ(t, t) = 1, it reads Ψ(t, τ) = exp[−

∫ τ

t
ψdz].
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Industrial policy

In this section, we address the impact of the market structure of an
economy on its growth path. That is, we consider the implications of a set
of (preliminary given) rules for market entry, bureaucracy requirements,
adoption of technologies, patents, etc. that indirectly determines the share
of markets in which firms operate in a competitive environment.

With respect to the y good, we explore the existence of goods that are
supplied competitively no matter what the considered set of rules looks like.
Recapitulate that our first idea of y was a good whose production is barely
capital intensive. Thus, there are probably no large bureaucratic burdens
to overcome and their production process is likely to be easily replicable.
Additionally, y may incorporate goods whose patent rights may not be
protected or blueprints that are traditionally known. Also, there may exist
industries with risk-free and otherwise barely costly start-up procedures and
some sectors where mark-up pricing can not be tolerated ”politically”.

Departures from the standard model

Technically speaking, we depart from the standard Grossman-Helpman
model in two related aspects. On the one hand, there is (severe) competition
in the supply of a fraction of Dixit-Stiglitz varieties. On the other hand, we
avoid the artificial absence of static monopoly distortions implied by equal
mark-up pricing in the standard model. This is accomplished by assuming
the permanent existence of a competitive sector.

Without both a potential growth enhancing escape competition effect and
static distortions, a benevolent social planner would not have any incentive
to maintain competition. If it was not for positive R&D spillovers through
public knowledge capital, allocation in the standard variety model economy
were efficient. Here in contrast, consumers always spend a constant fraction
(1 − σ) of total expenditures to purchase cy. This can easily be seen by
multiplying (11) by p(j) and summing up over all n varieties j to get spending
on cx: ∫ n

0

p(j)x(j)dj =

∫ n

0

σp(j)1−ε∫ n

0
p(j′)1−εdj′

dj = σ

∫ n

0
p(j)1−εdj∫ n

0
p(j′)1−εdj′

= σ (17)
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Thus, even in the absence of competition in any of the j-markets (θ = 0),
the market power of firms in the economy differs whereby some of the relative
prices do not adequately reflect marginal cost. Accordingly, households base
the splitting of total consumption on distorted prices and monopoly profits
always give rise to the well-known trade-off between static welfare losses and
dynamic gains from an increased incentive to innovate (see the note given
after equation 11).

4 The imitation model

Static equilibrium

Denote by v and w the value of a variety and the wage rate, respectively. In
equilibrium, an active research sector must yield zero profits to avoid both
an incentive for entry and exit. Accordingly, free entry to R&D requires at
most zero profits,

wa ≥ nv ≡ V −1 (18)

with equality whenever ṅ > 0. In any period t, v equals the present value of
expected future profits, π:

v(t) ≡
∫ ∞

t

e−(ρ+ψ)(τ−t)π(τ)dτ (19)

Taking the derivative with respect to t, ˙v(t) = −π(t)+
∫∞
t
π(τ)e−(ρ+ψ)(τ−t)(ρ+

ψ)dτ , and substituting for the definition of v, we get the no arbitrage condi-
tion that characterizes capital market equilibrium:

(ρ+ ψ)v(t) = π(t) + v̇(t)

π(t) + v̇(t)− ψv(t) = ρv(t) (20)

In expectations, the value of dividend payments (π) and changes in the
value of capital due to growth and imitation (v̇−ψv) have to equal the return
on a riskless bond (ρv = rv).

Now consider monopoly profits. Note that by (14) and (15),∫ n

0
p(j)1−εdj = w1−εn +

(
w
α

)1−ε
(n − n). Hence, revenues in the competitive

intermediate markets add up to

Ex ≡
∫ n

0

p(j)x(j)dj =

∫ n

0

σ

n+ αε−1(n− n)
dj =

σθ

θ(1− αε−1) + αε−1
.
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Accordingly, the sum of revenues for the monopolists is given by

Ex ≡
∫ n

n

p(j)x(j)dj =
σ(n− n)αε−1

n+ αε−1(n− n)
=

σ(1− θ)αε−1

θ(1− αε−1) + αε−1
.

Using nxp = Ex, we may express each monopolists profit, π = (1−α)px,
in terms of θ:

π =
σ(1− α)

[1− θ(1− α1−ε)]n
(21)

Monopoly profits thus decline both in the share of competitive interme-
diate markets as well as in the number of available blueprints and increase
with the desire for the y good.

Two remarks concerning (21) are in order. Firstly note that in an econ-
omy with a constant number of blueprints, (19) guarantees the value of an
innovation to remain strictly positive:

v(t) =
σ(1− α)

[1− θ(1− α1−ε)]n(ρ+ ψ)
(22)

Secondly, since ∂v
∂n
< 0, the right hand side of (22) is an upper bound for the

value of blueprints in a growing economy in any point of time.
Next, rewrite labor demand in the production sectors:

Lx =
Ex

p
=

(1− θ)αε

θ(1− αε−1) + αε−1

σ

w

Lx =
θ

θ(1− αε−1) + αε−1

σ

w

Ly =
1− σ

w
(23)

Finally, each household is assumed to supply L units of labor inelastically,
hence labor market clearing requires

L = ag + Lx + Ly (24)

Using (23) in (24) yields

L = ag +
σ

w

[
θ(1− αε) + αε

θ(1− αε−1) + αε−1
+

1− σ

σ

]
. (25)

A static equilibrium is simply a labor allocation satisfying (18), (20) and
(25).
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Dynamic Equilibrium

If the economy grows at positive rate, the free entry in R&D condition (18)
holds with equality such that, in this case, V = (wa)−1. Additionally, by
(13), the growth rate of knowledge is restricted to non negative values. Taken
together, solving (25) for g gives

g = max

{
0,
L

a
− θ [(1− αε)σ + (1− σ)(1− αε−1)] + αεσ + (1− σ)αε−1

θ(1− αε−1) + αε−1
V

}
= max

{
0,
L

a
− 1− θ[1− α1−ε − (1− α)σ]− (1− α)σ

1− θ(1− α1−ε)
V

}
. (26)

Since the coefficient of V is positive (consider the upper row in (26)), the
first argument of the max operator becomes binding iff V ≥ Ṽ where Ṽ is
defined such that it stashes away the second argument:

Ṽ (θ) ≡ L

a

1− θ(1− α1−ε)

1− θ[1− α1−ε − (1− α)σ]− (1− α)σ
(27)

By construction, V ≥ Ṽ yields zero growth whereas V < Ṽ potentially
results in the positive growth rate given by the second argument of the max
operator in (26). On the relevant unit interval, Ṽ (θ) is continuous, strictly
decreasing and strictly convex,

Ṽ ′(θ) =
L

a

αε−1σ(α− 1)

(.)2
< 0

Ṽ ′′(θ) =
L

a

αε−1σ(1− α) [2(.)(1− αε)σ + (1− σ)(1− αε−1)]

(.)4
> 0

with Ṽ (0) = L/a[1− (1− α)σ]−1 and Ṽ (1) = L/a.

The dynamics of the system are fully characterized by the equations of
motion for V and θ. Since V̂ = −v̂ − g by definition and v̂ = ρ + ψ − π/v
in the capital market equilibrium, see (20), after inserting monopoly profits
(21), we get the law of motion for V :

V̂ =
(1− α)σ

1− θ(1− α1−ε)
V − (ρ+ ψ)− g. (28)
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The share of competitive intermediates evolves according to θ̇ = ṅ/n−θg.
Taking the imitation technology (16) into account yields the law of motion
for θ:

θ̂ =
1− θ

θ
ψ − g (29)

Accordingly, if the number of existing blueprints remains constant, the
increase in the share of competitive markets is the smaller, the larger θ
(using (16) in θ̂ = n̂ yields θ̇ = (1− θ)ψ).

To begin with, concentrate on g = 0, i.e. V ≥ Ṽ . According to (28), V
is constant on

V̄0(θ) = (ρ+ ψ)
1− θ(1− α1−ε)

(1− α)σ
, V = 0 (30)

V̄ ′
0 =

(ρ+ ψ)(α1−ε − 1)

(1− α)σ
> 0 (31)

where V̄0(0) = (ρ + ψ)/[(1 − α)σ] and V̄0(1) = (ρ + ψ)/[(1 − α)αε−1σ].
Equivalently, by (29), the θ̇ = 0 locus in the zero growth area reads θ̄0 = 1.
The slopes of V̄0 and Ṽ involve that V̄0(θ) is irrelevant as long as Ṽ (1) > V̄0(1).
That is, an economy has the potential for long-run growth if the resource base
is large enough to satisfy

L

αa
>

ρ+ ψ

(1− α)αεσ
. (A1)

If, however, V̄0(0) ≥ Ṽ (0), V̄0(θ) is relevant on the whole unit interval. Ac-
cordingly,

L

αa
<

(ρ+ ψ)[1− (1− α)σ]

(1− α)ασ
(A2)

describes a resource base too low to generate a positive growth steady state.
As both Ṽ and V̂ are strictly monotone, if (A1) and (A2) do not hold,

they uniquely intersect on the unit interval, and hence the possibility for
positive growth exists.
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Next, consider the strictly positive growth area, i.e. V < Ṽ . By (28), V
is constant on

V̄ (θ) ≡
(
ρ+ ψ +

L

a

)
1− θ(1− α1−ε)

1− θ[1− α1−ε − (1− α)σ]
, V = 0 (32)

where V̄ (0) = ρ + ψ + L/a and V̄ (1) =
(
ρ+ ψ + L

a

)
[1 + (1− α)αε−1σ]

−1

(< V̄ (0)). For θ ∈ (0, 1), the V̇ = 0 locus is strictly decreasing and strictly
convex (see appendix 7.1).

By (29), the θ̇ = 0-locus reads

θ̄(θ) ≡
(
L

a
− 1− θ

θ
ψ

)
1− θ(1− α1−ε)

1− θ [1− α1−ε − (1− α)σ]− (1− α)σ
(33)

= Ṽ (θ)− 1− θ

θ
ψ

1− θ(1− α1−ε)

1− θ [1− α1−ε − (1− α)σ]− (1− α)σ
(34)

where θ̄(1) = L/a and θ̄(θ) = 0 once on the unit interval, θ̄−1(0)1 =
(L/(αψ) + 1)−1, and once on the irrelevant negative real line, θ̄−1(0)2 =
(1− α1−ε)−1.

Note that by (34), θ̄ ≤ Ṽ (θ) on (0, 1] with equality if θ = 1. Some
technical remarks characterizing the run of θ̄(θ) are in order. Firstly, (33)
exhibits two discontinuity points on the real line, namely θ = 0 and θ =
[1− (1− α)σ]/[1− α1−ε − (1− α)σ] < 0. Secondly, at the former point (see
appendix 7.2),

lim
θ→0+(−)

θ̄(θ) = −(+)∞ (35)

while at the latter,

lim
θ→ 1−(1−α)σ

1−α1−ε−(1−α)σ

+(−)
θ̄(θ) = (−)∞. (36)

Thirdly, with N(θ) ≡ 1− θ[1− α1−ε − (1− α)σ]− (1− α)σ,

θ̄′(θ) =
1

N(θ)

{(
L

a
− 1− θ

θ
ψ

)
×

×N(θ)(α1−ε − 1) + [1− θ(1− α1−ε)] [1− α1−ε − (1− α)σ]

N(θ)
+

+
ψ

θ2

[
1− θ(1− α1−ε)

]}
(37)

and hence

θ̄′(1) = ψ − (1− α)αε−1σ
L

a
. (38)
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Preliminaries

In this section, we will discuss the run of both the θ̇ = 0 and V̇ = 0 locus
under different parameter constellations. We will start with an economy
that has sufficient resources to satisfy (A1) and afterwards turn to less
endowed economies.

Under (A1), θ̄(1)′ < 0 since then L/(αa) > ψ/[(1−α)αεσ]. Thus, (38) and
(35) imply that θ̄ exhibits a maximum on (0, 1). To see that this maximum
is unique, consider (37) which restricts the number of extreme values for θ̄ to
at most two, since, if they indeed exist, they are implicitly given by the roots
of the second order polynomial (the derivation is delegated to appendix 7.5):{

1− θ
[
1− α1−ε − (1− α)σ

]
− (1− α)σ

} [
1− θ(1− α1−ε]ψ =

(1− α)α1−εσ

[
θ
L

a
− (1− θ)ψ

]
θ (39)

Both sides of this equation are quadratic with positive leading coefficients
(explicitly shown in appendix 7.3), thus both are rising on the left as well
as on the right. Define the left-hand side as ζ(θ) and the right-hand side as
ξ(θ).

Then, ζ(0) = α2ε−1ψ > 0 and (ζ ′)−1(0) < 0 (see appendix 7.3). With
respect to ξ(θ), ξ(0) = 0 and (ξ′)−1(0) = ψ/[2(L/a+ψ)] > 0. Taken together
θ̄ has indeed two extreme values (∃θ s.t. ζ = ξ 6= 0), and one is located on
((ζ ′)−1(0), 0). Thus, if there is a maximum on the unit interval, it is unique.
Note that ζ and ξ intersect at θ = 1, iff the resource base satisfies
L/(αa) = ψ/[(1 − α)αεσ] which is lower than required by (A1). We know
from appendices 7.3 and 7.4 that ζ(θ)′ does not depend on L/a whereas
∂ξ′(θ)/∂(L/a) > 0 if θ > 0. Accordingly, if (A1) holds, there exists an
intersection and hence a maximum on ((ξ′)−1(0), 1).
Moreover, observing 1 − (1 − α)σ < α1−ε, (A1) implies V̄ (0) < Ṽ (0) and
directly gives V̄ (1) < Ṽ (1) = θ̄(1). Recognizing (35) and V̄ (0) > 0, the latter
observations imply an intersection of V̄ (θ) and θ̄(θ) on the unit interval. In
addition, under (A1) they imply that the number of intersections on the
unit interval must be odd. Recognizing the common multiplicative factor
in (33) and (32), which vanishes for θ̄−1(0)2 < 0, another intersection is
located on (−∞, 0). Since equating both loci after canceling the common
term clearly does not yield a cubic polynomial at the least (see the up-
coming equation 40), it has to be that the interior steady state is unique.
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Figure 1: An economy satisfying (A1).

It is located in the g > 0 region, see (34). The situation in which the
resource base is ”large” in the sense that it suffices (A1) is depicted in figure 1.

As an aside, note that resources L/(αa) < ψ/[(1 − α)αεσ] imply that θ̄
does not exhibit an extremum on the unit interval (θ̄′(1) > 0 in combination
with the discussion on the run of θ̄ above). In this case , there exists no
intersection of V̄ (θ) and θ̄(θ) in the relevant interval since the condition that
ruled out the interior maximum of θ̄ also rules out θ̄(1) ≥ V̄ (1), which would
require

L

a
≥ ρ+ ψ

αε−1(1− α)σ
>

ψ

αε−1(1− α)σ
.

Such a ”small” resource base economy is depicted in figure 2.
We are yet missing resource bases ranging between the previous mentioned
boundaries, i.e.

ψ

(1− α)αεσ
<

L

αa
<

ψ + ρ

(1− α)αεσ
. (A3)
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Figure 2: An economy satisfying (A2).

Here, θ̄ again exhibits an unique maximum on the unit interval. The
corresponding highest V value will exceed L/A since θ̄(1) = L/a and θ̄′(1) <
0. Also, V̄ (1) > L/a since assuming the contrary implies a contradiction:

V̄ (1) =
ρ+ ψ + L

a

1 + (1− α)αε−1σ
≤ L

a

ρ+ ψ

(1− α)αεσ
≤ L

αa

As mentioned above, equating θ̄ and V̄ offers at most two intersections on
(0,∞). Thus, if both loci intersect on the unit interval, they do so twice since
V̄ (0) > θ̄(0) and V̄ (1) > L/a. If they do not, we are back in the case with
no interior intersection described in the last paragraph. If they do, however,
by (34) there exist two interior steady states which, by (34) are located in
the positive growth region. The two cases are depicted in figures 3 and 4.

We further explore this possibility by equating (32) and (33). After drop-
ping an irrelevant negative solution, potential steady states are implicitly
given by (derivation see appendix 7.6):
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Figure 3: An economy satisfying (A3) without intersection of V̄ and θ̄.

θ2ρA+ θ

{
L

a
(1− α)σ + ψ(1− α1−ε)− ρ [1− (1− α)σ]

}
− ψ = 0 (40)

(1− θ)ψ = θ2ρA+ θ

{
L

a
(1− α)σ − ψα1−ε − ρ [1− (1− α)σ]

}
(41)

where A ≡ 1− α1−ε − (1− α)σ < 0. For (41) to hold in the relevant area,

L

αa
>
ψ + ραε−1 [1− (1− α)σ]

(1− α)αεσ
(42)

since otherwise the second coefficient of r(θ) is negative or null, and hence
l(θ) and r(θ) could never balance in sign. Define the left-hand side of (41) as
l(θ) and the right-hand side as r(θ). Then, l(θ) is a downward sloping straight
line through l(0) = ψ and l(1) = 0. r(θ) has a negative leading coefficient,
thus is hump shaped, and passes through the origin with positive slope (the
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Figure 4: An economy satisfying (A3) with two intersections of V̄ and θ̄

necessary condition for two interior intersections of θ̄(θ) and V̄ (θ) given by
(42) amounts to require r′(0) > 0. Also, with a resource base ranging between
the borders given by (A3), r(1) < 0 (see appendix 7.7). That is, if r(θ)
intersects with l(θ), the (usually) two intersections are located on θ ∈ (0, 1).
The possible cases for these ”intermediate” economies are depicted in figure
(7.6).

Solving (A1) and (A2) for ψ, we have

L

αa
[(1− α)αεσ]− ρ > ψ (43)

L

αa

(1− α)ασ

1− (1− α)σ
− ρ < ψ. (44)

In figure 6, we plot (43) and (44) in (L/(αa), ψ)-space to get a first
impression of the endowments leading to no interior intersections of the zero
growth loci for θ and V (region I) and one unique intersection (region II),
respectively.
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Figure 5: Two or no interior intersections of θ̄(θ) and V̄ (θ).

Figure 6: Parameters implying no (region I) and one intersection (region II)
of θ̄ and V̄ .
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Two interior steady states may only occur in the region between region
I and region II. Solving (40) for θ, and labeling the second coefficient of the
polynomial by B, two solutions emerge if the radicand in

√
B2 + 4ψρA is

positive.
Accordingly, B2 + 4ψρA = 0 implicitly defines a correspondence

ψ(L/(αa)) that cuts off the region where no interior steady state occurs:{
L

a
(1− α)σ + ψ(1− α1−ε)− ρ [1− (1− α)σ]

}2

+ 4ψρA = 0 (45)

Implicit differentiation of (45) gives the slope of the cut-off line as

∂ψ

∂
(
L
αa

) = − (1− α)ασ

1− α1−ε + 2ρ[1−α1−ε−(1−α)σ]
B

> 0. (46)

The inequality sign hereby follows from B > 0 which is satisfied for
L/(αa) in the range between the critical values given by (A1) and (A2):

L

αa
≥ {[1− (1− α)σ] ρ− (1− α1−ε)ψ}αε−1

(1− α)αεσ

=
[1− (1− α)σ] ρ− (1− α1−ε)ψ

(1− α)ασ
.

If B were 0, i.e. L/(αa) were equal to the border given by (A2) with
equality, the slope and also the value for ψ were 0 (4ψρA = 0). Figure
7 qualitatively includes the correspondence implicitly given by (6) in the
previous considered separation of parameter space (a numerical example is
provided in appendix 7.8). Two interior steady states occur in the hatched
area.
We conclude that, from a theoretical point of view, two interior steady states
may occur if the resource base is just not large enough to generate long-run
positive growth in the presence of imitation. The calculation in appendix 7.9
provides a numerical example.

For further reference, we make the following definition:

Definition 1 (Scale of the resource base). A resource base implying no (two,
one) interior intersection of V̄ (θ) and θ̄(θ) is henceforth called ”low” (”in-
termediate”, ”large”).
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Figure 7: Two interior steady states occur in the hatched area.

We will solve the model for all three possibilities by considering the
associated phase diagrams in turn. In the intermediate case in which V̄ (θ)
and θ̄(θ) do not intersect, the dynamics are analogous to those resulting in
figure 3.

Solution

Observe firstly that the V̇ = 0 locus is always instable:

∂V̇

∂V

∣∣∣∣∣
V̄(0)

=
(1− α)σ

1− θ(1− αε−1)
V > 0

Accordingly, starting from below or above V̄(0) would imply V → ∞ and
V → 0 in the long run.

Lemma 1. Paths that ultimately implying either V = 0 or V → ∞ violate
rational expectations.

Proof: In line with the reasoning in Grossman and Helpman [1991].
Firstly, if V were to approach infinity, nv → 0 by definition. Since g = 0, this
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requires v → 0, but according to (22), v > 0. Secondly, V = 0 also offers a
contradiction since, as noted before, in a growing economy v is smaller than
the (positive) right-hand side of (22), hence V > 0.

Secondly, let Θ(θ, V ) ≡ θ̇ = (1 − θ)ψ − θg(θ, V ). By definition,
Θ(θ, θ̄(θ)) = 0. As dΘ/dV > 0, θ̂ > 0 (< 0) above (below) θ̄.

Small resource base

A small resource base economy is defined as an economy that does not exhibit
an interior common point of rest of both V and θ. As depicted in figure 8,
both variables however do share two common points of rest on the axes, i.e.
(1, V̄0(1)) and (θ̄(0), 0).

Proposition 1 (Small resource base economy). An unique steady state equi-
librium exists: V̄ (θ∗) = θ̄(θ∗) = (1, V̄0(1)). The associated growth rate is
zero. The steady state is a globally stable saddle point.

Proof: We utilize our previous work on the run and location of the relevant
loci. Applying lemma 1, only steady state θ̄(θ∗) = (1, V̄0(1)) remains. It is
located in the zero growth area. By definition of V̄0, trajectories crossing
V̄0 have zero slope at the point of intersection, dV/dθ = V̇ /θ̇ = 0. Above
V̄0, dV/dθ > 0. Accordingly, there exists a trajectory leading directly into
steady state. Trajectories above imply V → ∞ and thus are ruled out by
lemma 1. Then again, starting just below, the dynamics of the system drive
the economy towards the no-growth border since V̄ is instable and the no-
growth area is located to the left of the stable θ̄. Continuing (or starting)
just below Ṽ , V continues to decrease while the share of competitive markets
increases until the economy hits θ̄. Here, dV/dθ → −∞. Eventually, as θ̄
is continuously increasing, the economy passes through θ̄ and tends towards
the (θ̄(0), 0) steady state, all along accompanied by a steady decrease in both
the share of competitive markets and V . Trajectories that start below Ṽ and
hit the abscissa to the left of θ̄ also end up in (θ̄(0), 0).

The saddle path is increasing since v decreases while n remains constant.
The value of a monopolistically produced good in turn decreases since the
associated profits decrease in the share of competitive markets, see (21). As
the share of competitively priced goods increases, monopolists will find it
harder to place their high priced varieties.
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Figure 8: Dynamics in a small resource base economy

Large resource base

Figure 9 was drawn using our previous findings on the run of the relevant loci
in the large resource base economy. Here, θ̄(θ) and V̄ (θ) separate the relevant
phase plane in four regions. As shown in the beginning of this section, V̂ > 0
(< 0) above and below V̄ while θ̂ < 0 (> 0) above and below θ̄. Thus, starting
above both zero growth loci and turning clockwise around the intersection,
trajectories are pointing to the north-east, north-west, south-west, south-
east. These dynamics are represented by the arrows. Two trajectories pass
through the fixpoint, i.e. it is a saddle point. The trajectories that pass
through θ̄ (V̄ ) do so with infinite (zero) slope (dV/dθ = V̇ /θ̇). Accordingly,
the saddle path has the depicted shape. It is convex since θ̇ < 0 and V̇ > 0
between V̄ and θ̄, thus

˙̂
V = (1− α)σ

[1− θ(1− α1−ε)] V̇ + θ̇(1− α1−ε)V

(.)2
> 0

˙̂
θ = −ψ

θ
< 0
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Figure 9: Dynamics in a large resource base economy

and
˙̂
V − ˙̂

θ > 0 implying that all trajectories in the considered area are strictly
convex. Taken together, we may state

Proposition 2 (Large resource base economy). There exists an unique
steady state equilibrium: V̄ (θ∗) = θ̄(θ∗). The associated growth rate is posi-
tive. The steady state is a globally stable saddle point.

We next turn to the intermediate resource base economy and consider
the case of two interior steady states as previously depicted in figure 4.

Intermediate resource base

Let us denote the left and right hand side intersection of θ̄ and V̄ by steady
state I and II, respectively. Note that these two intersections are not the
only singular points. As θ is also constant on θ = 1, see (29), (V̄0(1), 1) is a
third singular point, henceforth called steady state III. Apparently, dynamics
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Figure 10: Dynamics in an intermediate resource base economy

in the neighborhood of steady state I are identical to those analyzed in the
previous section, i.e. starting in the south of steady state I and moving
clockwise, trajectories point to the north-east, north-west, south-west, south-
east. This dynamic behavior characterizes steady state I as saddle point.
The stable arm starting from the ordinate is decreasing, passing ”through”
steady state I and II. This last feature has to hold since every trajectory
starting at either θ̄ or V̄ between steady state I and II would imply V →∞
and V → 0, respectively and can thus not be part of the trajectory leading
towards steady state I. As indicated by the arrows in figure 10, starting in the
south of steady state II and moving clockwise around it, trajectories point
to the north-east, south-east, south-west, north-west. Thus, steady state II
is totally unstable (it is no center). This implies that infinitely many paths
depart from its immediate vicinity, from which we may pick one that points
towards V →∞ and one that points towards the intersection of θ̄(0) and the
abscissa. The two chosen paths thus form a funnel in which one trajectory
ends up in steady state III, i.e. the saddle path.
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Thus, if we consider an initial share of competitive markets θ(0) < θc,
where θc is the θ value belonging to steady state II, there are three possibil-
ities. If we were to start above (below) the saddle path, the dynamics of the
system would ultimately imply V →∞ (V = 0). Both cases are ruled out by
lemma 1. Hence, the economy immediately has to start on the saddle path.
It then gradually converges towards steady state I and hence enjoys long-run
positive growth. Then again, if we consider an initial share of competitive
markets θ(0) > θc, paths above and below the trajectory pointing towards
steady state III are ruled out by lemma 1. Accordingly, it has to be that
the economy converges on the saddle path towards its long-run zero growth
equilibrium. Collecting all the information from the above section, we have
just shown

Proposition 3 (Intermediate resource base economy). There exists a critical
value θc for the initial share of competitive markets. If θ(0) < θc (θ(0) > θc),
the economy converges towards steady state I (III). Steady state I (III) has
the properties described in proposition 2 (1).

Accordingly, in an intermediate resource base economy, the long-run
development crucially depends on the initial degree of competition. Note
that if we were to start with a competitive share slightly higher than θc,
the economy would initially enjoy a positive growth rate. After some time
however, the economy hits Ṽ and will find itself in zero-growth transition.
If steady state III is reached, all monopolies have vanished and the economy
is finally stuck in the no-growth trap.

By now, we considered product market competition due to costless imi-
tation. In what follows, we reinterpret the baseline model as to describe the
impact of industrial policy from a macro perspective.

5 The industrial policy model

As described earlier in section 3, the impact of industrial policy may be
such that some industries operate in a competitive environment while
others do not. We focus on the impact of a constant set of initial rules
that shapes the degree of competition to abstract from anticipation issues.
If we stick to the standard assumption of infinitively valid patents, the
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overall share of competitive markets in the innovating sector will obvi-
ously tend towards zero in the long-run. Our assumptions concerning
the utility function however guarantee that the trade-off between welfare
losses and the incentive to innovate remains. Accordingly, we are able
to further explore this trade-off by comparing the welfare implications
of different steady states. We demonstrate that the static welfare losses
may actually be large enough to offset the positive gains from an increas-
ing number of varieties. This finding is quite intuitive: as any positive
growth rate requires market power in the first place, if economies are only
able to generate a small growth rate, they may then find it worthwhile to
forgo economic growth and thereby avoid welfare losses due to market power.

Static and dynamic equilibrium

The industrial policy model follows from the imitation setting without on-
going imitation. Accordingly, we simply adopt the free entry condition (18)
and the profits of monopolists, (21). Without anticipation of future policy
shocks, the value of any monopolistically produced brand and the capital
market equilibrium is given by (19) and (20) with ψ = 0, i.e.

v(t) ≡
∫ ∞

t

e−ρ(τ−t)π(τ)dτ (47)

ρv(t) = π(t) + v̇(t). (48)

Solving the labor market clearing condition (25) for g yields the growth
rate given in (26) and again, the (θ, V ) space is separated in a growth and
no growth area by Ṽ (θ), see (27). The laws of motion for θ and V given by
(28) and (29) simplify to

V̂ = V
σ(1− α)αε−1

θ(1− αε−1) + αε−1
− g − ρ (49)

θ̂ = −g. (50)

Solution

Drawing on the work in the previous sections, the zero growth loci for V
both in the g = 0 and g > 0 area can easily be obtained by setting ψ = 0 in
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(30) and (32):

V̄0(θ) ≡ ρ
1− θ(1− α1−ε)

(1− α)σ
(51)

V̄ (θ) ≡
(
ρ+

L

a

)
1− θ(1− α1−ε)

1− θ[1− α1−ε − (1− α)σ]
(52)

The run of both functions was previously derived in the imitation model and
does not change significantly by choosing ψ = 0. Additionally, V is constant
on V = 0. Recapitulating (29), in a growing economy and with perfect patent
protection for newly invented brands, θ̇ = 0 only at θ = 0. If V (θ) ≥ Ṽ (θ),
θ remains constant. For the time being, we provisionally assume that the
economy fulfills the necessary prerequisites for a long-run positive growth
equilibrium: Ṽ (0) > V̄ (0), i.e. L/a > [1− (1− α)σ]ρ/[(1− α)σ].

Suppose there exists an intersection of V̄ (θ) and Ṽ (θ), i.e. a share of
competitive markets defined by V̄ (θ∗) ≡ Ṽ (θ∗). By definition of Ṽ (θ),
(θ∗, V̄ (θ∗)) is characterized by g = V̇ = 0. If 0 < θ∗ < 1, the locus of a
point with this features is exclusively characterized by V̄0(θ). Accordingly,
V̄ (θ∗) ≡ Ṽ (θ∗) = V̄0(θ

∗). Equating (27) with (51) and (52), respectively, and
dropping an irrelevant negative solution yields a unique remaining positive
intersection of Ṽ , V̄ and V̄0 at

θ∗ =

(
L
aρ

+ 1
)

[σαε−1(1− α)]− αε−1

1− αε−1 + σαε−1(1− α)

=
[1− σ(1− α)]

(
L
aρ

+ 1
)

[1− σ(1− α)]− α1−ε . (53)

Note that if Ṽ (0) < V̄ (0), θ∗ 6∈ (0, 1) since the numerator and the denom-
inator of θ∗ exhibit different signs. If the provisional parameter restriction
holds, it directly implies the numerator to be strictly positive such that θ∗ is
located on the unit interval iff L/(aρ) < α1−ε/[(1− α)σ].

Then, Ṽ , V̄0 and V̄ intersect in the relevant area and show the run de-
picted in figure 11. Clearly, this is the industrial policy analogue of the
intermediate resource base economy from the chapter on imitation. Equiva-
lently, if the resource base were lower (larger), we would get the small (large)
economy analogue.
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In what follows, we focus on the intermediate case:

1− (1− α)σ

(1− α)σ
<

L

aρ
<

α1−ε

(1− α)σ
(A3′)

Figure 11: Phase diagram under A3′

By (28), the piecewise defined zero growth locus for V is instable, V̂
> (<) 0 if V > (<) V̄(0). Since θ is constant above Ṽ and decreasing
everywhere below, we get the dynamics represented by the arrows in figure
1. Clearly, there are multiple steady states. One is located in the g > 0
area, namely (0, ρ + L

a
) ≡ S. Also, each point on V̄0 above Ṽ is a point of

rest, likewise is (0, 0).

Dynamic equilibrium

Consider a situation in which the initial set of policies or ”market rules” is
such that a fraction θ(0) of markets in the x-sector operates competitively
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while the incumbent firms in each of the remaining markets enjoy monopoly
power.

We will describe the dynamic equilibrium firstly for θ(0) ≥ θ∗ and after-
wards consider θ(0) < θ∗.

Lemma 2. If θ(0) ≥ θ∗, the economy instantly gets stuck in a no growth
equilibrium with θ = θ(0) and V = V̄0(θ(0)).

Proof: If this were not the case, given θ(0), both V > V̄0(θ(0)) and
V < V̄0(θ(0)) would violate rational expectations since a) in the first case,
due to the instability of V̄0, V →∞ and b), in the second case, the economy
would approach (0, 0), i.e. V = 0 in the long run. Both cases are ruled out
by lemma 1.

Lemma 3. If θ(0) < θ∗, there exists an increasing, strictly convex saddle
path leading to an unique steady state, (0, V̄ (0)). The associated growth rate
is positive.

Proof: As indicated by the arrows in figure 11, χ ≡ V/θ increases every-
where above V̄ and decreases below. Again, trajectories above Ṽ and below
V̄ imply V →∞ and V = 0, respectively, and according to lemma 1 violate
rational expectations. In the area between, V̂ > 0 and θ̇ > 0, i.e.

˙̂χ = V

{
V̂

(1− α)αε−1

θ(1− αε−1) + αε−1
− (1− α)αε−1(1− αε−1)θ̇

[θ(1− αε−1) + αε−1]2

}
> 0.

Thus, the saddle path is strictly convex. It has to run ”through” (θ∗, Ṽ (θ∗))
just as departing from an intersection with either Ṽ or V̄ would again even-
tually yield V → ∞ and V = 0, respectively. Lemma 1 completes the
argument.

S exhibits the (positive) Grossman-Helpman growth rate (consider (26)
and steady state S value for V ):

gS =
L

a
− αεσ + (1− σ)αε−1

αε−1

(
ρ+

L

a

)
=

[
L

a
(1− α)− αρ

]
σ − (1− σ)ρ (54)

As opposed to the absence of transitional dynamics in the standard
setting, the economy does not jump directly in the steady state, but starts on
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the point on the saddle path determined by the initial share of competitive
markets. If the share is not too high, i.e. θ(0) ≤ θ∗, the economy grows
at positive rate and converges to its long run equilibrium. This implies an
increasing number of monopolistic markets and accordingly, the share of
competitive markets tends towards zero. Compared to standard Grossman-
Helpman, the long run growth rate is driven down by the households desire
to consume goods from the (static) y sector which diverts resources away
from the innovative branch of the economy (σ < 1 appears in the first term
in equation 54).

Growth vs. no Growth

Discounted utility can be calculated by evaluating equation (1) at steady
state values for any θ implying the absence of transition, which according
to lemmas 2 and 3 are θ(0) ∈ {0, [θ∗, 1]}. Make use of one to one relation
between factor input and output, nx = Lx and nx = Lx, to write cx =

(nxα + nxα)
1
α as

cx = n
1−α

α

[
θ1−αLαx + (1− θ)1−α L

α

x

] 1
α . (55)

In what follows, we compare the positive growth steady state S without
transitional dynamics and the zero growth steady state T ≡ (θ = 1, V =
ρ/[σ(1 − α)αε−1]. In any steady state without transition, indirect present
value utility reads

U =

∫ ∞

0

exp(−ρt) [σ ln cx + (1− σ) ln cy] dt

=

∫ ∞

0

exp(−ρt)×

×
{
σ

[
1− α

α
lnn+

1

α
ln

(
θ1−αLαx + (1− θ)1−αL

α

x

)]
+ (1− σ) lnLy

}
dt

=
σ

ρ

1− α

α

[
lnn(0) +

g

ρ

]
+

1

ρ

{σ
α

ln
[
(1− θ)L

α

x + θ1−αLαx
]
+ (1− σ) lnLy

}
.

In S, θ = 0 and hence

ρ

[
US − σ

ρ

1− α

α
lnn(0)

]
= σ lnL

S

x + (1− σ) lnLSy +
σ

ρ

1− α

α
gS. (56)
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In T , θ = 1 and g = 0:

ρ

[
UT − σ

ρ

1− α

α
lnn(0)

]
= σ lnLTx + (1− σ) lnLTy (57)

where LTx + LTy has to equal L. Maximizing the right-hand side by choosing
LTx yields the efficient labor allocation in the static economy:

σ

1− σ
=
LTx
LTy

(58)

Lemma 4. Labor is efficiently allocated in T . In S, too much labor is devoted
to the y sector.

Proof: In T , all markets are competitive. Thus, LTx = σ/p = σL since
the capital market has zero value which implies wL = 1 by the instantaneous
budget constraint, see (2). Equivalently, LTy = (1 − σ)/w = (1 − σ)L, and
according to (58) labor is allocated efficiently. In S, all markets in sector
x are monopolistic and LSx = σα/w = ασaV s. If the economy grows with
positive rate, L−ag units of labor may be divided in the two sectors x and y.
According to (57) and gs given by (54), an efficient allocation that maximizes
U s would have to satisfy Lx = σ(L− ag). Comparing LSx to this benchmark
amounts to comparing αV to L/a − g. The former is α(L/a + ρ) while the
latter reads

L

a
− L

a
σ(1− α) + ρ [1− σ(1− α)] = [1− σ(1− α)]

(
L

a
+ ρ

)
.

Since α < 1, α(1− σ) < 1− σ and hence 1− σ(1− α) > α. This completes
the proof to lemma 4.

Accordingly,

s(·) ≡ σ ln L̄Sx + (1− σ) lnLSy > σ lnLTx + (1− σ) lnLTy ≡ t(·). (59)

Let G(·) ≡ σ(1−α)/(αρ)gS. With this abbreviation, the right-hand sides
of (56) and (57) read s(·) +G(·) and t(·), respectively.

Proposition 4 (Size of static distortions). If the long-run growth rate is
sufficiently low, static distortions due to market power can be large enough
to offset welfare gains from growth.
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Proof: We plotted t, s and G against L/a in the left panel of figure 5.
The right panel of this figure shows the associated present value of utility
according to (56) and (57). As t(·) is discrete larger than s(·), see (59), while
G(·) is continuous in L/a, there exist cases in which g > 0 and US < UT .

6 Conclusions

In this article, we have considered competitive markets in the standard in-
creasing variety growth model. Competition in existing varieties was mo-
tivated by either costless imitation (section 4) or by industrial policy rules
(section 5). In the former model, we concluded that the impact of the profit
decreasing channel of competition crucially depends on the size of the re-
source endowment of the economy. In analogy to Grossman and Helpman
[1991] we find that economies with sufficiently large endowments exhibit a
positive growth rate in the long-run. In equilibrium, both monopolistic and
competitive markets exist. Economies with a resource base too small to
sustain long-run growth end up exclusively with competitive markets. In
contrast to the standard model, there exists an intermediate range in which
the long-run growth crucially depends on the initial share of competitive mar-
kets. Below some critical value, the economy behaves like a richly endowed
economy whereas with too much initial competition it will ultimately get
stuck in a no growth trap. If competitive and monopolistic markets coexist
in the long-run, the varying degrees of market power give rise to static welfare
losses. Decreasing these losses however comes at the expense of decreasing
the incentives to innovate. Accordingly, by introducing asymmetry, allowing
for competition is one way to establish the often considered trade-off between
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static and dynamic goals in the standard variety growth model. We explored
this trade-off in the industrial policy version of the baseline model. Compar-
ing positive and zero growth steady states, we showed that the static welfare
losses may actually be large enough to offset the benefits of long-run growth.
This situation occurs once the positive growth rate is ”small”. Then, taking
losses due to market power does not pay off even in the long run.
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7 Appendix

7.1 On the run of V̄

V̄ ′(θ) =

(
ρ+ ψ +

L

a

)
×

× {1− θ [1− α1−ε − (1− α)σ]} (α1−ε − 1)− [1− θ(1− α1−ε)] [α1−ε − 1(1− α)σ]

(.)2

=

(
ρ+ ψ +

L

a

)
(1− α)(α1−ε − 1)σθ − (1− α)σ [1− θ(1− α1−ε)]

(.)2

=

(
ρ+ ψ +

L

a

)
(α− 1)σ

(.)2
< 0

V̄ ′′(θ) =

(
ρ+ ψ +

L

a

)
(α− 1)σ

1− α− (1− α)σ

(.)4
> 0

7.2 On the run of θ̄(θ)

Using a somewhat sloppy notation, at the first discontinuity point (θ = 0),

lim
θ→0+(−)

θ̄(θ) =
1

1− (1− α)σ

(
L

a
− lim

θ→0+(−)

1− θ

θ
ψ

)
= −(+)∞

At the latter, i.e. θ = 1−(1−α)σ
1−α1−ε−(1−α)σ

,

lim
θ→ 1−(1−α)σ

1−α1−ε−(1−α)σ

+(−)
θ̄(θ) = −

(
L

a
+

α1−ε

1− (1− α)σ

)
×

× lim
θ→ 1−(1−α)σ

1−α1−ε−(1−α)σ

+(−)

[
(1− α)σα1−ε

1− θ[1− α1−ε − (1− α)σ]− (1− α)σ

]
= (−)∞

7.3 On ζ(θ)

As mentioned in the main text, ζ(θ) has a positive leading coefficient. This
becomes obvious once we rewrite ζ(θ) as

ψ
{
θ2

[
1− α1−ε − (1− α)σ

]
(1− α1−ε)− θ

[
2(1− α1−ε)− (1− α)(2− α1−ε)σ

]
+

+1− (1− α)σ}
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Next, we show that (ζ ′)−1(0) < 0, i.e. the extreme value of ζ is located on
the negative real line. The derivative of ζ(θ) with respect to θ reads

ζ ′(θ) =
{
N ′(θ)

[
1− θ(1− α1−ε)

]
+N(θ)(α1−ε − 1)

}
ψ

Equating this expression to zero yields

1− θ(1− α1−ε) =
N(θ)

N ′(θ)
(1− α1−ε) (60)

Clearly, N(θ) ≡ 1 − θ[1 − α1−ε − (1 − α)σ] − (1 − α)σ = 1 − θ [1− α1−ε] −
(1− α)(1− θ)σ > 0. As N ′(θ) = −(1− α1−ε) + (1− α)σ = α(α−ε − σ) > 0,
the right-hand side of (60) is strictly negative. Accordingly, (ζ ′)−1(0) < 0.

7.4 On ξ(θ)

We defined ξ ≡ (1− α)α1−εσ
[
θL
a
− (1− θ)ψ

]
θ. Accordingly,

Ξ ≡ ξ′(θ) = (1− α)α1−εσ

[
2θ

(
L

a
+ ψ

)
− ψ

]
Thus, ∂Ξ/∂(L/a) = 2(1− α)α1−εσθ > 0.

7.5 Derivation of equation 39

Equating (37) to zero yields:[
L

a
− 1− θ

θ
ψ

]{
N(θ)(α1−ε − 1) +

[
1− θ(1− α1−ε)

] [
1− α1−ε − (1− α)σ

]}
=

= − ψ

θ2
N(θ)

[
1− θ(1− α1−ε)

]
Multiply by −1/θ2 to get

N(θ)ψ
[
1− θ(1− α1−ε)

]
=

=

[
θ
L

a
− (1− θ)ψ

]
θ
{
N(θ)(1− α1−ε)−

[
1− α1−ε − (1− α)σ

]
+

+ θ(1− α1−ε)
[
1− α1−ε − (1− α)σ

]}
Inserting the definition of N(θ) simplifies the expression in parentheses

to
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{
1− θ

[
1− α1−ε − (1− α)σ

]
− (1− α)σ

}
(1− α1−ε)−

[
1− α1−ε − (1− α)σ

]
+

+θ
[
1− α1−ε − (1− α)σ

]
(1− α1−ε) =

= 1− α1−ε − (1− α)
(
1− α1−ε)σ − [

1− α1−ε − (1− α)σ
]

=

= (1− α)α1−εσ

Plug this factor back in the previous expression to get equation 39.

7.6 Derivation of equation 40[
L

a
− 1− θ

θ
ψ

]
1− θ (1− α1−ε)

1− θ [1− α1−ε − (1− α)σ]− (1− α)σ
=

=

(
ρ+ ψ +

L

a

)
1− θ (1− α1−ε)

1− θ [1− α1−ε − (1− α)σ]

Let A ≡ [1− α1−ε − (1− α)σ] (< 0).[
L

a
− 1− θ

θ
ψ

]
{1− θA} = {1− θA− (1− α)σ}

(
ρ+ ψ +

L

a

)
[
L

a
θ − (1− θ)ψ

]
(1− θA) = [1− θA− (1− α)σ]

(
ρ+ ψ +

L

a

)
θ

Multiply terms to get

L

a
θ(1− θA)− L

a
θ [1− θA− (1− α)σ]− ψ(1− θ)(1− θA)− [1− θA− (1− α)σ]ψθ =

= [1− θA− (1− α)σ] ρθ

L

a
θ(1− α)σ − ψ(1− θ)A+ θψ(1− α)σ = ρθ − θ2ρA− (1− α)σρθ

Collecting terms yields

L

a
θ(1− α)σ − ψ + ψθA+ θψ(1− α)σ − ρθ + θ2ρA+ (1− α)σρθ = 0

θ2ρA+ θ

[
L

a
(1− α)σ + ψA+ ψ(1− α)σ − ρ+ (1− α)σρ

]
= ψ

θ2ρA+ θ

{
L

a
(1− α)σ + ψ [A+ (1− α)σ]− ρ [1− (1− α)σ]

}
= ψ

θ2ρA+ θ

{
L

a
(1− α)σ + ψ(1− α1−ε)− ρ [1− (1− α)σ]

}
= ψ (61)
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As our objective is to find conditions for relevant solutions, i.e. θ ∈ (0, 1),
we rearrange terms such that both sides become functions of θ with nice
properties:

θ2ρA+ θ

{
L

a
(1− α)σ − ψα1−ε − ρ [1− (1− α)σ]

}
= ψ(1− θ) (62)

If we define the left hand side of this equation as r(θ) and the right hand side
as l(θ), then r(0) = 0, l(0) = ψ and l(1) = 0. Figure gives an illustration.

7.7 On r(θ)

The derivative of r(θ) is

r′(θ) = 2θρA+

{
L

a
(1− α)σ − ψα1−ε − ρ [1− (1− α)σ]

}
Accordingly,

r′(0) =
L

a
(1− α)σ − ψα1−ε − ρ [1− (1− α)σ]

which is strictly positive if

L

a
>
ψα1−ε + ρ [1− (1− α)σ]

(1− α)σ

As shown in the main text, (42) holds. Multiply both sides by α and cancel
αε on the right hand side to see that r′(0) > 0 in the considered region.

Assumption A3 ensures r(1) < 0. As

r(1) = ρA+
L

a
(1− α)σ − ψα1−ε − ρ [1− (1− α)σ]

which is strictly negative if

L

a
(1− α)σ < ρ[1− (1− α)σ] + ψα1−ε − ρ[1− α1−ε − (1− α)σ]

L

αa
<

ψ + ρ

(1− α)αεσ
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Figure 12: A numerical example for the separation of the parameter space.

7.8 On the separation of parameter space

Let α = 0.5, ρ = 0.1, σ = 0.5. The separation of the parameter space for
this particular case is shown in figure 12.

7.9 On the possibility of two interior steady states

Let α = 0.6, ρ = 0.1, ψ = 0.05, σ = 0.5. Then, as depicted in figure 13, l(θ)
and r(θ) intersect twice (θ = 0.44578, θ = 0.829818) on (0, 1).
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Figure 13: A numerical example.
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